Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Continuous fibers carbon

Composites. High molecular weight PPS can be combiaed with long (0.6 cm to continuous) fiber to produce advanced composite materials (131). Such materials having PPS as the polymer matrix have been developed by usiag a variety of reinforcements, including glass, carbon, and Kevlar fibers as mat, fabric, and unidirectional reinforcements. Thermoplastic composites based on PPS have found application ia the aircraft, aerospace, automotive, appliance, and recreation markets (see Composite materials, polymer-matrix). [Pg.450]

Because of their unique blend of properties, composites reinforced with high performance carbon fibers find use in many structural applications. However, it is possible to produce carbon fibers with very different properties, depending on the precursor used and processing conditions employed. Commercially, continuous high performance carbon fibers currently are formed from two precursor fibers, polyacrylonitrile (PAN) and mesophase pitch. The PAN-based carbon fiber dominates the ultra-high strength, high temperature fiber market (and represents about 90% of the total carbon fiber production), while the mesophase pitch fibers can achieve stiffnesses and thermal conductivities unsurpassed by any other continuous fiber. This chapter compares the processes, structures, and properties of these two classes of fibers. [Pg.119]

Molecular sieves are porous aluminosilicates (zeolites) or carbon solids that contain pores of molecular dimensions which can exhibit seleaivity according to the size of the gas molecule. The most extensive study on carbon molecular sieve membranes is the one by Koresh and Soffer (1980,1987). Bird and Trimm (1983) also described the performance of carbon molecular sieve membranes, but they were unable to prepare a continuous membrane. Koresh and Soffer (1980) prepared hollow-fiber carbon molecular sieves, with pores dimensions between 0.3 and 2.0 run radius (see Chapter 2). [Pg.107]

Recall from Section 1.4.5.1 that there are two primary types of carbon fibers polyacrylonitrile (PAN)-based and pitch-based. There are also different structural forms of these fibers, such as amorphous carbon and crystalline (graphite) fibers. Typically, PAN-based carbon fibers are 93-95% carbon, whereas graphite fibers are usually 99+%, although the terms carbon and graphite are often used interchangeably. We will not try to burden ourselves with too many distinctions here, since the point is to simply introduce the relative benefits of continuous-fiber composites over other types of composites, and not to investigate the minute differences between the various types of carbon-fiber-based composites. The interested reader is referred to the abundance of literature on carbon-fiber-reinforced composites to discern these differences. [Pg.500]

Due to the fact that the mechanical properties of unidirectional, continuous-fiber-reinforced composites are highly anisotropic, maximum effectiveness is often achieved by making laminate composites of multiple layers. This is particularly true of carbon and Kevlar -reinforced polymers, which will be described in Section 5.4.3. [Pg.501]

R. A. J. Sambell, A. Briggs, D. H. Bowen, and D. C. Phillips, Carbon Fibre Composites with Ceramic and Glass Matrices, Part 2 Continuous Fibers, J. Mater. Sci., 7, 676-681 (1972). [Pg.411]

In order to improve the surface properties of carbon fibers without affecting the mechanical properties of the reinforcing fibers, various monomers, including pyrrole and carbazole, were used to electrograft conjugated copolymers and produce homogeneous and continuously coated carbon fiber surfaces <2001SM391>. [Pg.355]

The last quarter of the twentieth century saw tremendous advances in the processing of continuous, fine diameter ceramic fibers. Figure 6.4 provides a summary of some of the important synthetic ceramic fibers that are available commercially. We have included in Fig. 6.4 two elemental fibers, carbon and boron, while we have excluded the amorphous, silica-based glasses. Two main categories of synthetic ceramic fibers are oxide and nonoxides. A prime example of oxide fibers is alumina while that of nonoxide fibers is silicon carbide. An important subclass of oxide fibers are silica-based glass fibers and we devote a separate chapter to them because of their commercial importance (see chapter 7). There are also some borderline ceramic fibers such as the elemental boron and carbon fibers. Boron fiber is described in this chapter while carbon fiber is described separately, because of its commercial importance, in Chapter 8. [Pg.141]

A composite consists of 45% by volume of continuous, aligned carbon fibers and an epoxy resin. The tensile strength and modulus of the fibers is 3000 Mpa and 200 GPa, respectively, while the corresponding parameters of the cured epoxy are 70 MPa and 2.5 GPa, respectively. Determine (a) which component of the composite will fail first when the material is deformed in the fiber direction, and (b) the failure stress of the composite. [Pg.482]

Organic matrices are divided into thermosets and thermoplastics. The main thermoset matrices are polyesters, epoxies, phenolics, and polyimides, polyesters being the most widely used in commercial applications (3,4). Epoxy and polyimide resins are applied in advanced composites for structural aerospace applications (1,5). Thermoplastics Uke polyolefins, nylons, and polyesters are reinforced with short fibers (3). They are known as traditional polymeric matrices. Advanced thermoplastic polymeric matrices like poly(ether ketones) and polysulfones have a higher service temperature than the traditional ones (1,6). They have service properties similar to those of thermoset matrices and are reinforced with continuous fibers. Of course, composites reinforced with discontinuous fibers have weaker mechanical properties than those with continuous fibers. Elastomers are generally reinforced by the addition of carbon black or silica. Although they are reinforced polymers, traditionally they are studied separately due to their singular properties (see Chap. 3). [Pg.657]

Ceramic reinforcing fibers are utilized both in a continuous form (endless fibers) and in a discontinuous form (e.g. whiskers, short fibers). Most of the continuous fibers are utilized in the manufacture of composites with polymer matrices (PMC), where they are in competition with other high performance fibers (boron, carbon fibers), mainly for military or aerospace applications. Discontinuous fibers are generally used for the manufacture of metal matrix (MMC) and ceramic matrix (CMC) composites. [Pg.388]

Keywords pitch-based high performance-type carbon continuous fiber reinforced plasUc, chemically resolvable resin, environment-conscious materials (ecomaterials) design, deformed rebar, hybrid structure, lighweight precast concrete, recycle, service life,... [Pg.81]


See other pages where Continuous fibers carbon is mentioned: [Pg.144]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.153]    [Pg.163]    [Pg.388]    [Pg.33]    [Pg.122]    [Pg.174]    [Pg.184]    [Pg.205]    [Pg.361]    [Pg.499]    [Pg.144]    [Pg.1620]    [Pg.92]    [Pg.260]    [Pg.153]    [Pg.163]    [Pg.663]    [Pg.179]    [Pg.440]    [Pg.292]    [Pg.292]    [Pg.55]    [Pg.81]    [Pg.82]    [Pg.83]    [Pg.83]    [Pg.85]    [Pg.89]    [Pg.90]    [Pg.3]    [Pg.2315]    [Pg.76]   
See also in sourсe #XX -- [ Pg.190 , Pg.218 , Pg.219 , Pg.226 , Pg.256 ]




SEARCH



Carbon continued

Continuous fiber

© 2024 chempedia.info