Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide ruthenium

Amines are also obtained in excellent yields, at room temperature and atmospheric pressure, using carbon monoxide, ruthenium carbonyl and benzyltriethylammonium chloride in an aqueous base-organic solvent system. The method is significantly milder than previously described water gas shift reaction conditions. [Pg.373]

Ruthenium. Ruthenium, as a hydroformylation catalyst (14), has an activity signiftcandy lower than that of rhodium and even cobalt (22). Monomeric mthenium carbonyl triphenylphosphine species (23) yield only modest normal to branched regioselectivities under relatively forcing conditions. For example, after 22 hours at 120°C, 10 MPa (1450 psi) of carbon monoxide and hydrogen, biscarbonyltristriphenylphosphine mthenium [61647-76-5] ... [Pg.470]

A Belgian patent (178) claims improved ethanol selectivity of over 62%, starting with methanol and synthesis gas and using a cobalt catalyst with a hahde promoter and a tertiary phosphine. At 195°C, and initial carbon monoxide pressure of 7.1 MPa (70 atm) and hydrogen pressure of 7.1 MPa, methanol conversions of 30% were indicated, but the selectivity for acetic acid and methyl acetate, usehil by-products from this reaction, was only 7%. Ruthenium and osmium catalysts (179,180) have also been employed for this reaction. The addition of a bicycHc trialkyl phosphine is claimed to increase methanol conversion from 24% to 89% (181). [Pg.408]

RuCl2(PPh3)2 reacts with 4-R2P-dibenzothiophene (R = Ph, p-Tol) and forms 303, in which the dibenzothiophene ligand is coordinated to ruthenium via the phosphorus and sulfur atoms [84JA5379, 87JOM(318)409]. The donor ability of the sulfur atom is relatively weak. Complex 303 (R = Ph) is able to add carbon monoxide and yield the monocarbonyl adduct. [Pg.46]

The most successful class of active ingredient for both oxidation and reduction is that of the noble metals silver, gold, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Platinum and palladium readily oxidize carbon monoxide, all the hydrocarbons except methane, and the partially oxygenated organic compounds such as aldehydes and alcohols. Under reducing conditions, platinum can convert NO to N2 and to NH3. Platinum and palladium are used in small quantities as promoters for less active base metal oxide catalysts. Platinum is also a candidate for simultaneous oxidation and reduction when the oxidant/re-ductant ratio is within 1% of stoichiometry. The other four elements of the platinum family are in short supply. Ruthenium produces the least NH3 concentration in NO reduction in comparison with other catalysts, but it forms volatile toxic oxides. [Pg.79]

This technique is the most widely used and the most useful for the characterization of molecular species in solution. Nowadays, it is also one of the most powerful techniques for solids characterizations. Solid state NMR techniques have been used for the characterization of platinum particles and CO coordination to palladium. Bradley extended it to solution C NMR studies on nanoparticles covered with C-enriched carbon monoxide [47]. In the case of ruthenium (a metal giving rise to a very small Knight shift) and for very small particles, the presence of terminal and bridging CO could be ascertained [47]. In the case of platinum and palladium colloids, indirect evidence for CO coordination was obtained by spin saturation transfer experiments [47]. [Pg.239]

Ruthenium is a known active catalyst for the hydrogenation of carbon monoxide to hydrocarbons (the Fischer-Tropsch synthesis). It was shown that on rathenized electrodes, methane can form in the electroreduction of carbon dioxide as weU. At temperatures of 45 to 80°C in acidihed solutions of Na2S04 (pH 3 to 4), faradaic yields for methane formation up to 40% were reported. On a molybdenium electrode in a similar solution, a yield of 50% for methanol formation was observed, but the yield dropped sharply during electrolysis, due to progressive poisoning of the electrode. [Pg.293]

Sugimoto W, Saida T, Takasu Y. 2006. Co-catalytic effect of nanostructured ruthenium oxide towards electro-oxidation of methanol and carbon monoxide. Electrochem Commun 8 411-415. [Pg.339]

Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger JM, Lamy C. 1998. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes. J Electroanal Chem 444 41-53. [Pg.370]

Watanabe M, Motoo S. 1975b. Electrocatalysis by ad-atoms Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J Electroanal Chem 60 275-283. [Pg.374]

Williams ED, Weinberg WH. 1979. The geometric structure of carbon monoxide chemisorbed on the ruthenium (001) surface at low temperatures. Surf Sci 82 93. [Pg.506]

The preparation of carbonylmetals by treating a transition metal halide either with carbon monoxide and zinc, or with iron pentacarbonyl is well-known and smooth. However, a violent eruptive reaction occurs if a methanolic solution of a cobalt halide, a rhodium halide or a ruthenium halide is treated with both zinc and iron pentacarbonyl. [Pg.594]

Winslow, P., and Bell, A. T. 1985. Studies of the surface coverage of unsupported ruthenium by carbon- and hydrogen-containing adspecies during carbon monoxide hydrogenation. J. Catal. 91 142-54. [Pg.78]

Fischer-Tropsch synthesis could be "tailored by the use of iron, cobalt and ruthenium carbonyl complexes deposited on faujasite Y-type zeolite as starting materials for the preparation of catalysts. Short chain hydrocarbons, i.e. in the C-j-Cq range are obtained. It appears that the formation and the stabilization of small metallic aggregates into the zeolite supercage are the prerequisite to induce a chain length limitation in the hydrocondensation of carbon monoxide. However, the control of this selectivity through either a definite particle size of the metal or a shape selectivity of the zeolite is still a matter of speculation. Further work is needed to solve this dilemna. [Pg.201]

Hydrogenation of Carbon Monoxide to Methanol and Ethylene Glycol by Homogeneous Ruthenium Catalysts... [Pg.213]

Table I. Hydrogenation of carbon monoxide with ruthenium catalysts. All reactions performed in a glass-lined rocker bomb with 2.35 mmol Ru (charged as RU3CO) 2), at 230°C under 340 atm 1 1 H2/CO for 2 h, unless noted otherwise. Table I. Hydrogenation of carbon monoxide with ruthenium catalysts. All reactions performed in a glass-lined rocker bomb with 2.35 mmol Ru (charged as RU3CO) 2), at 230°C under 340 atm 1 1 H2/CO for 2 h, unless noted otherwise.
Aromatic Gasoline From Hydrogen/Carbon Monoxide Over Ruthenium/Zeolite Catalysts... [Pg.304]

Allyl methylcarbonate reacts with norbornene following a ruthenium-catalyzed carbonylative cyclization under carbon monoxide pressure to give cyclopentenone derivatives 12 (Scheme 4).32 Catalyst loading, amine and CO pressure have been optimized to give the cyclopentenone compound in 80% yield and a total control of the stereoselectivity (exo 100%). Aromatic or bidentate amines inhibit the reaction certainly by a too strong interaction with ruthenium. A plausible mechanism is proposed. Stereoselective CM-carboruthenation of norbornene with allyl-ruthenium complex 13 followed by carbon monoxide insertion generates an acylruthenium intermediate 15. Intramolecular carboruthenation and /3-hydride elimination of 16 afford the -olefin 17. Isomerization of the double bond under experimental conditions allows formation of the cyclopentenone derivative 12. [Pg.301]

Kondo and Watanabe developed allylations of various types of aldehydes and oximes by using nucleophilic (7r-allyl)ruthenium(ll) complexes of type 154 bearing carbon monoxide ligands (Equation (29)).345 These 73-allyl-ruthenium complexes 154 are ambiphilic reagents and the presence of the carbon monoxide ligands proved to be essential to achieve catalytic allylation reactions. Interestingly, these transformations occur with complete regioselectivity only the more substituted allylic terminus adds to the aldehyde. [Pg.440]


See other pages where Carbon monoxide ruthenium is mentioned: [Pg.6649]    [Pg.6648]    [Pg.6649]    [Pg.6648]    [Pg.177]    [Pg.172]    [Pg.199]    [Pg.734]    [Pg.98]    [Pg.179]    [Pg.820]    [Pg.1336]    [Pg.87]    [Pg.1]    [Pg.44]    [Pg.106]    [Pg.53]    [Pg.75]    [Pg.78]    [Pg.83]    [Pg.88]    [Pg.199]    [Pg.218]    [Pg.241]    [Pg.84]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Carbon monoxide catalysts, ruthenium complexes

Carbon monoxide ruthenium-based catalysts

Carbon monoxide-ruthenium adsorption

Ruthenium catalysts carbon monoxide oxidation

Ruthenium clusters reaction with carbon monoxide

Ruthenium complexes reaction with carbon monoxide

© 2024 chempedia.info