Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium 7 *-allyls

A ruthenacyclopentane 48 has been proposed as an intermediate in this reaction, after coordination of the allene and enone. Exocyclic /1-hydride elimination led to the 1,3-dienes. This ruthenacycle possessed a o-bound ruthenium allyl, allowing nucleophilic additions by alcohols or amines. Alkylative cycloetherification [29] (Eq. 20) and synthesis of pyrrolidine and piperidine [30] were thus achieved. [Pg.10]

Insight into the mechanism involved was obtained in two labeling studies, as shown in Eqs. 5.24 and 5.25. The former indicates that the carbon bearing the hydroxyl group preferentially forms the new C-C bond to the terminal alkyne carbon. The latter indicates that the alkene geometry is largely retained. These studies support the intervention of a jt-allyl species in which rotation around the ruthenium-allyl axis is slow relative to the rate of reductive elimination and the absence of a n-allyl intermediate. [Pg.139]

Studies of catalyst decomposition in the presence of substrate have mostly focused on ethylene. In particular, it has been demonstrated that ethylene can induce the degradation of methylidene complex 19 to produce propylene as the main volatile organic byproduct [3, 39]. The proposed mechanism for this degradation involves the ruthenacyclobutane intermediate (20) undergoing a P-hydride elimination to form a ruthenium allyl-hydride species (21), which subsequently affords the propylene complex (22) upon reductive elimination (Scheme 11.8). [Pg.331]

Surprisingly, coupling reactions between the hexamethylbenzene-ruthenium-allyl compound 59 and various alkynes generate complexes 60, in whieh one methyl substituent of the hmb ligand has been replaced by hydrogen (Equation (6)). " Presumably, this dealkylation proeess involves an / <7<9-hexamethyl-T/ -cyclohexadienyl intermediate. ... [Pg.474]

Catalytic hydrogenation is mostly used to convert C—C triple bonds into C C double bonds and alkenes into alkanes or to replace allylic or benzylic hetero atoms by hydrogen (H. Kropf, 1980). Simple theory postulates cis- or syn-addition of hydrogen to the C—C triple or double bond with heterogeneous (R. L. Augustine, 1965, 1968, 1976 P. N. Rylander, 1979) and homogeneous (A. J. Birch, 1976) catalysts. Sulfur functions can be removed with reducing metals, e. g. with Raney nickel (G. R. Pettit, 1962 A). Heteroaromatic systems may be reduced with the aid of ruthenium on carbon. [Pg.96]

Allylation of perfluoroalkyl halides with allylsilanes is catalyzed by iron or ruthenium carbonyl complexes [77S] (equation 119) Alkenyl-, allyl-, and alkynyl-stannanes react with perfluoroalkyl iodides 111 the presence ot a palladium complex to give alkenes and alkynes bearing perfluoroalkyl groups [139] (equation 120)... [Pg.478]

Metathesis of N-tosylated ene-amides and yne-amides has been less extensively investigated. An example of the RCM of ene-amides is a new indole synthesis developed by Nishida [79] metathesis precursor 96 (prepared by ruthenium-catalyzed isomerization of the corresponding allyl amide) is cy-clized to indole 97 in the presence of 56d (Eq. 13). [Pg.251]

The CM reaction between 2-methyl-2-butene (a gera-disubstituted olefin that served in this case also as solvent) and the allylated compound 300, possessing the bicyclo[3.3.1]nonane core of the potential Alzheimer therapeutic garsubellin A (302) [137], underlines the increased activity of the second-generation ruthenium catalysts (Scheme 58). In the presence of 10 mol% of NHC catalyst C, the prenylated compound 301 was formed after only 2 h in 88% yield. [Pg.330]

Chlorination of the Cp Ru(amidinate) complexes is readily achieved by treatment with CHCI3, while oxidative addition of allylic halides results in formation of cationic Ti-allyl ruthenium(IV) species (Scheme 243). °... [Pg.279]

D KR of allylic alcohols can be also performed using ruthenium complexes for the racemization that occurs through hydrogen transfer reactions (vide infra) [16]. [Pg.93]

A more direct access to the unstable and non isolated sulfonium ylides 58a- c is the reaction of diisopropyl diazomethylphosphonate 57 with allylic sulfides, catalyzed by Cu(II), Rh(II) [39], or ruthenium porphyrins.[40] For example, the a-phosphorylated y,d-unsaturated sulfides 59-61 are obtained through the [2,3] -sigmatropic rearrangement of 58a-c. This method allows the use of a greater variety of starting allylic sulfide substrates, such as 2-vinyl tetrahydrothiophene, or propargylic sulfides (Scheme 15). [Pg.173]

The method is not restricted to secondary aryl alcohols and very good results were also obtained for secondary diols [39], a- and S-hydroxyalkylphosphonates [40], 2-hydroxyalkyl sulfones [41], allylic alcohols [42], S-halo alcohols [43], aromatic chlorohydrins [44], functionalized y-hydroxy amides [45], 1,2-diarylethanols [46], and primary amines [47]. Recently, the synthetic potential of this method was expanded by application of an air-stable and recyclable racemization catalyst that is applicable to alcohol DKR at room temperature [48]. The catalyst type is not limited to organometallic ruthenium compounds. Recent report indicates that the in situ racemization of amines with thiyl radicals can also be combined with enzymatic acylation of amines [49]. It is clear that, in the future, other types of catalytic racemization processes will be used together with enzymatic processes. [Pg.105]

DKR of allylic alcohols with cymene-ruthenium catalyst 4 ... [Pg.63]

Allylic alkylations of cinnamyl carbonate by sodium malonate have been studied with a series of ruthenium catalysts, obtained from the azohum salts 126-128 and the ruthenium complex 129 (Scheme 2.25) in MeCN or THF to give moderate yields of mixtures of alkylated products in the allylic and ipi o-carbons (90 10 to 65 35). The observed regioselectivity is inferior to similar ruthenium systems with non-NHC co-ligands. The stereoelectronic factors which govern the observed regioselectivity were not apparent [102]. [Pg.52]

A mixture of catalyst 110 and vinyl trimethylsilyl enolether 115 has been used in cycloisomerisation of (V-allyl-o-vinylanilines 114 and (V.A-diallyl-p-toluenesulfonamide 115 to afford the corresponding products 118 and 119, respectively (Scheme 5.30) [34]. It is believed that the active catalyst species is the ruthenium hydride NHC complex 117. [Pg.147]

The isomerisation of aUylic alcohols to saturated ketones usually has a strong thermodynamic driving force. The ruthenium NHC complex 62 has been used to catalyse the isomerisation of allylic alcohol 59 which gives ketone 60 as the principal product along with some of the reduction product 61 [32]. The catalyst was water-soluble and the aqueous phase could be re-used for several runs (Scheme 11.15). NHC analogues of Crabtree s catalyst, [IrlPCyjKpyridineXcod)] PFg, were found to be less efficient for the isomerisation of allylic alcohols than... [Pg.260]

Ruthenium complexes containing this ligand are able to reduce a variety of double bonds with e.e. above 95%. In order to achieve high enantioselectivity, the reactant must show a strong preference for a specific orientation when complexed with the catalyst. This ordinarily requires the presence of a functional group that can coordinate with the metal. The ruthenium-BINAP catalyst has been used successfully with unsaturated amides,23 allylic and homoallylic alcohols,24 and unsaturated carboxylic acids.25... [Pg.378]

Osmium tetroxide used in combination with sodium periodate can also effect alkene cleavage.191 Successful oxidative cleavage of double bonds using ruthenium tetroxide and sodium periodate has also been reported.192 In these procedures the osmium or ruthenium can be used in substoichiometric amounts because the periodate reoxidizes the metal to the tetroxide state. Entries 1 to 4 in Scheme 12.18 are examples of these procedures. Entries 5 and 6 show reactions carried out in the course of multistep syntheses. The reaction in Entry 5 followed a 5-exo radical cyclization and served to excise an extraneous carbon. The reaction in Entry 6 followed introduction of the allyl group by enolate alkylation. The aldehyde group in the product was used to introduce an amino group by reductive alkylation (see Section 5.3.1.2). [Pg.1127]

The synthesis and olefin metathesis activity in protic solvents of a phosphine-free ruthenium alkylidene bound to a hydrophilic solid support have been reported. This heterogeneous catalyst promotes relatively efficient ring-closing and cross-metathesis reactions in both methanol and water.200 The catalyst-catalyzed cross-metathesis of allyl alcohol in D20 gave 80% HOCH2CH=CHCH2OH. [Pg.83]

It has also been shown that dimethylsilyl enolates can be activated by diisopropylamine and water and exhibit a high reactivity toward iV-tosyl imines to give Mannich-type reaction products in the absence of a Fewis acid or a Bronsted acid.51 For example, the reaction of [(1-cyclohexen-l-yl)oxy]dimethylsilane with 4-methyl-A -(phenylmethylene)benzene sulfonamide gave re/-4-methyl-N- (f )-[(15)-(2-oxocyclohexyl)phenyl-methyl] benzenesulfonamide (anti-isomer) in 91% yield stereoselectively (99 1 anti syn) (Eq. 11.30). On the other hand, Fi and co-workers reported a ruthenium-catalyzed tandem olefin migration/aldol and Mannich-type reactions by reacting allyl alcohol and imine in protic solvents.52... [Pg.350]

The most important ruthenium-catalyzed domino process is based on a metathesis reaction. Nonetheless, a few other ruthenium-catalyzed processes have been employed for the synthesis of substituted 3,y-unsaturated ketones, as well as unsaturated y-lactams and allylic amines. [Pg.439]

A novel lactone and lactol synthesis was achieved by Cossy and coworkers [268], usinga CM followedby ahydrogenationandaringclosure. Ina typical procedure, aso-lution of acrylic acid or acrolein and an allylic or homoallyhc alcohol is stirred at room temperature under 1 atm of H2 in the presence of the ruthenium catalyst 6/3-16a and Pt02. Under these conditions, the homoallylic alcohols 6/3-101 (n= 1) and acrylic acid 6/3-102 led to the lactones 6/3-103 and the reduced alcohol 6/3-104 with acrolein, the corresponding lactols were obtained, together with 6/3-104 (Scheme 6/3.30). [Pg.455]


See other pages where Ruthenium 7 *-allyls is mentioned: [Pg.385]    [Pg.817]    [Pg.70]    [Pg.138]    [Pg.146]    [Pg.191]    [Pg.783]    [Pg.251]    [Pg.253]    [Pg.254]    [Pg.254]    [Pg.329]    [Pg.820]    [Pg.1025]    [Pg.1036]    [Pg.1039]    [Pg.1514]    [Pg.207]    [Pg.59]    [Pg.316]    [Pg.14]    [Pg.228]    [Pg.1336]    [Pg.128]    [Pg.247]   
See also in sourсe #XX -- [ Pg.266 ]




SEARCH



Allyl and Dienyl Complexes of Ruthenium

Allylation ruthenium catalysis

Allylic alcohols ruthenium hydrogenation

Allylic ruthenium

Allylic substitution ruthenium catalysis

Enantioselective Reactions of Unsymmetrical Allylic Esters Catalyzed by Molybdenum, Ruthenium, Rhodium, and Iridium

Ruthenium allyl carbene complexes

Ruthenium allylic substitution reactions

Ruthenium catalysts enantioselective allylic substitutions

Ruthenium chloride, bis oxidation allylic alcohols

Ruthenium dioxide oxidation, allylic alcohols

Ruthenium, allyl complexes

Ruthenium-catalyzed hydrogenation allylic alcohols

© 2024 chempedia.info