Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide olefins

Cleavage is often associated with elimination of small, stable, neutral molecules, such as carbon monoxide, olefins, water, ammonia, hydrogen sulfide, hydrogen cyanide, mercaptans, ketene, or alcohols, often with rearrangement (Section 2.8). [Pg.14]

Heck RF. Transition metal-catalyzed reactions of organic halides with carbon monoxide, olefins, and acetylenes. Adv. Catal. 1977 26 323-349. [Pg.2134]

Mukesh, D., W. Morton, C. N. Kenney, and M. R. Cutlip, Island models and the catalytic oxidation of carbon monoxide and carbon monoxide-olefin mixtures. Surf. Sci., 138. 237-257 (1984). [Pg.34]

Transition metal compounds have a strong affinity for such substrates as carbon monoxide, olefins, acetylenes, hydrogen, and other simple unsaturated compounds, and activate them by forming complexes. Complex formation is indispensable for bringing these compounds and other organic substances into reactions. The transition metals have the ability to stabilize, through coordination, a wide variety of species as o-bonded or xr-bonded ligands. [Pg.42]

The acylpalladation of olefins, when followed by the insertion of carbon monoxide (Scheme 1), represents the essential step in the synthesis of the so-called polyketones, namely, of the alternating copolymers of olefins with carbon monoxide. Shell s introduction of Carilon, an alternating carbon monoxide olefin copolymer based on ethene and small amounts of propene, onto the market and the resulting commercial competitiont have spurred extensive research in this field. [Pg.904]

Metal-Catalyzed Reactions of Organic Halides with Carbon Monoxide, Olefins, and Acetylenes. [Pg.1466]

These are carbon monoxide, CO, unburned hydrocarbons (HC), and the nitrogen oxides, NO. In the U.S.A., a program called Auto/Oil (Burns et al., 1992), conducted by automotive manufacturers and petroleum companies, examined the effect of overall parameters of fuel composition on evaporative emissions and in the exhaust gases. The variables examined were the aromatics content between 20 and 45%, the olefins content between 5 and 20%, the MTBE content between 0 and 15% and finally the distillation end point between 138 and 182°C (more exactly, the 95% distilled point). [Pg.259]

The linear a olefins described m Section 14 15 are starting materials for the preparation of a variety of aldehydes by reaction with carbon monoxide The process is called hydroformylation... [Pg.711]

The addition of alcohols to form the 3-alkoxypropionates is readily carried out with strongly basic catalyst (25). If the alcohol groups are different, ester interchange gives a mixture of products. Anionic polymerization to oligomeric acrylate esters can be obtained with appropriate control of reaction conditions. The 3-aIkoxypropionates can be cleaved in the presence of acid catalysts to generate acrylates (26). Development of transition-metal catalysts for carbonylation of olefins provides routes to both 3-aIkoxypropionates and 3-acryl-oxypropionates (27,28). Hence these are potential intermediates to acrylates from ethylene and carbon monoxide. [Pg.151]

Process Technology. In a typical oxo process, primary alcohols are produced from monoolefins in two steps. In the first stage, the olefin, hydrogen, and carbon monoxide [630-08-0] react in the presence of a cobalt or rhodium catalyst to form aldehydes, which are hydrogenated in the second step to the alcohols. [Pg.457]

Fischer-Tropsch Process. The Hterature on the hydrogenation of carbon monoxide dates back to 1902 when the synthesis of methane from synthesis gas over a nickel catalyst was reported (17). In 1923, F. Fischer and H. Tropsch reported the formation of a mixture of organic compounds they called synthol by reaction of synthesis gas over alkalized iron turnings at 10—15 MPa (99—150 atm) and 400—450°C (18). This mixture contained mostly oxygenated compounds, but also contained a small amount of alkanes and alkenes. Further study of the reaction at 0.7 MPa (6.9 atm) revealed that low pressure favored olefinic and paraffinic hydrocarbons and minimized oxygenates, but at this pressure the reaction rate was very low. Because of their pioneering work on catalytic hydrocarbon synthesis, this class of reactions became known as the Fischer-Tropsch (FT) synthesis. [Pg.164]

Oxo Synthesis. Ad of the synthesis gas reactions discussed to this point are heterogeneous catalytic reactions. The oxo process (qv) is an example of an industriady important class of reactions cataly2ed by homogeneous metal complexes. In the oxo reaction, carbon monoxide and hydrogen add to an olefin to produce an aldehyde with one more carbon atom than the original olefin, eg, for propjiene ... [Pg.166]

Often the aldehyde is hydrogenated to the corresponding alcohol. In general, addition of carbon monoxide to a substrate is referred to as carbonylation, but when the substrate is an olefin it is also known as hydroformylation. The eady work on the 0x0 synthesis was done with cobalt hydrocarbonyl complexes, but in 1976 a low pressure rhodium-cataly2ed process was commerciali2ed that gave greater selectivity to linear aldehydes and fewer coproducts. [Pg.166]

Olefins are carbonylated in concentrated sulfuric acid at moderate temperatures (0—40°C) and low pressures with formic acid, which serves as the source of carbon monoxide (Koch-Haaf reaction) (187). Liquid hydrogen fluoride, preferably in the presence of boron trifluoride, is an equally good catalyst and solvent system (see Carboxylic acids). [Pg.563]

The mixture of carbon monoxide and hydrogen is enriched with hydrogen from the water gas catalytic (Bosch) process, ie, water gas shift reaction, and passed over a cobalt—thoria catalyst to form straight-chain, ie, linear, paraffins, olefins, and alcohols in what is known as the Fisher-Tropsch synthesis. [Pg.62]

Chromium Oxide-Based Catalysts. Chromium oxide-based catalysts were originally developed by Phillips Petroleum Company for the manufacture of HDPE resins subsequendy, they have been modified for ethylene—a-olefin copolymerisation reactions (10). These catalysts use a mixed sihca—titania support containing from 2 to 20 wt % of Ti. After the deposition of chromium species onto the support, the catalyst is first oxidised by an oxygen—air mixture and then reduced at increased temperatures with carbon monoxide. The catalyst systems used for ethylene copolymerisation consist of sohd catalysts and co-catalysts, ie, triaLkylboron or trialkyl aluminum compounds. Ethylene—a-olefin copolymers produced with these catalysts have very broad molecular weight distributions, characterised by M.Jin the 12—35 and MER in the 80—200 range. [Pg.399]

The 0X0 process, also known as hydrofomiylation, is the reaction of carbon monoxide (qv) and hydrogen (qv) with an olefinic substrate to form isomeric aldehydes (qv) as shown in equation 1. The ratio of isomeric aldehydes depends on the olefin, the catalyst, and the reaction conditions. [Pg.465]

DiisononylPhthalate andDiisodeeylPhthalate. These primary plasticizers are produced by esterification of 0x0 alcohols of carbon chain length nine and ten. The 0x0 alcohols are produced through the carbonylation of alkenes (olefins). The carbonylation process (eq. 3) adds a carbon unit to an alkene chain by reaction with carbon monoxide and hydrogen with heat, pressure, and catalyst. In this way a Cg alkene is carbonylated to yield a alcohol a alkene is carbonylated to produce a C q alcohol. Due to the distribution of the C=C double bond ia the alkene and the varyiag effectiveness of certain catalysts, the position of the added carbon atom can vary and an isomer distribution is generally created ia such a reaction the nature of this distribution depends on the reaction conditions. Consequendy these alcohols are termed iso-alcohols and the subsequent phthalates iso-phthalates, an unfortunate designation ia view of possible confusion with esters of isophthaUc acid. [Pg.122]

Toluene reacts with carbon monoxide and butene-1 under pressure in the presence of hydrogen fluoride and boron trifluoride to give 4-methyl-j iYbutyrophenone which is reduced to the carbinol and dehydrated to the olefin. The latter is cycHzed and dehydrogenated over a special alumina-supported catalyst to give pure 2,6- dim ethyl n aph th a1 en e, free from isomers. It is also possible to isomerize various dim ethyl n aph th a1 en es to the... [Pg.293]

The synthesis of copolymers of olefins with carbon monoxide (eq. 3) or ketones (eq. 4) leads to backbone or side-chain carbonyl functionaUty,... [Pg.475]

Synthetic Fuels. Hydrocarbon Hquids made from nonpetroleum sources can be used in steam crackers to produce olefins. Fischer-Tropsch Hquids, oil-shale Hquids, and coal-Hquefaction products are examples (61) (see Fuels, synthetic). Work using Fischer-Tropsch catalysts indicates that olefins can be made directly from synthesis gas—carbon monoxide and hydrogen (62,63). Shape-selective molecular sieves (qv) also are being evaluated (64). [Pg.126]

It has been discovered that styrene forms a linear alternating copolymer with carbon monoxide using palladium II—phenanthroline complexes. The polymers are syndiotactic and have a crystalline melting point - 280° C (59). Shell Oil Company is commercializing carbon monoxide a-olefin plastics based on this technology (60). [Pg.507]

Hydroformylation. Probably the best known catalytic carbonylation reaction is the hydroformylation, or 0x0 reaction, for producing aldehydes and alcohols from carbon monoxide, hydrogen, and olefins (eq. 9) (36). [Pg.51]

Carbon monoxide also reacts with olefins such as ethylene to produce high molecular weight polymers. The reaction of CO with ethylene can be initiated by an x-ray irradiator (62) or transition-metal cataly2ed reactions (63). The copolymeri2ation of ethylene with carbon monoxide is cataly2ed by cationic Pd (II) complexes such as Pd[P(CgH )2] (CH CN) (BF 2 where n = 1-3. With this catalyst, copolymeri2ation can be carried out at 25°C and pressures as low as 2.1 MPa. [Pg.52]


See other pages where Carbon monoxide olefins is mentioned: [Pg.10]    [Pg.12]    [Pg.180]    [Pg.204]    [Pg.301]    [Pg.208]    [Pg.119]    [Pg.134]    [Pg.1241]    [Pg.351]    [Pg.232]    [Pg.10]    [Pg.12]    [Pg.180]    [Pg.204]    [Pg.301]    [Pg.208]    [Pg.119]    [Pg.134]    [Pg.1241]    [Pg.351]    [Pg.232]    [Pg.46]    [Pg.232]    [Pg.508]    [Pg.390]    [Pg.433]    [Pg.375]    [Pg.436]    [Pg.465]    [Pg.506]    [Pg.95]    [Pg.179]    [Pg.374]   


SEARCH



Carbon monoxide aliphatic 1-olefin copolymerization

Carbon monoxide copolymerization with olefins

Carbon monoxide olefin hydrogenation effect

Carbon monoxide olefin insertion step

Carbon olefinic

Carbonates, olefination

Copolymerization of carbon monoxide and olefins

Copolymerization olefin-carbon monoxide

Olefin structures carbon monoxide insertion

Olefins and styrene co carbon monoxide polymers

Terpolymers of olefins, styrene and carbon monoxide

© 2024 chempedia.info