Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide control

F. Moreau, G. C. Bond, A. O. Taylor, Gold on titania catalysts for the oxidation of carbon monoxide Control of pH during preparation with various gold contents, ]. Catal. 231 (2005) 105. [Pg.336]

Morita T, Mitsialis SA, Koike H, Liu Y, Kourembanas S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J Biol Chem 1997 272 32804-32809. [Pg.648]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

The addition of alcohols to form the 3-alkoxypropionates is readily carried out with strongly basic catalyst (25). If the alcohol groups are different, ester interchange gives a mixture of products. Anionic polymerization to oligomeric acrylate esters can be obtained with appropriate control of reaction conditions. The 3-aIkoxypropionates can be cleaved in the presence of acid catalysts to generate acrylates (26). Development of transition-metal catalysts for carbonylation of olefins provides routes to both 3-aIkoxypropionates and 3-acryl-oxypropionates (27,28). Hence these are potential intermediates to acrylates from ethylene and carbon monoxide. [Pg.151]

The stoichiometric and the catalytic reactions occur simultaneously, but the catalytic reaction predominates. The process is started with stoichiometric amounts, but afterward, carbon monoxide, acetylene, and excess alcohol give most of the acrylate ester by the catalytic reaction. The nickel chloride is recovered and recycled to the nickel carbonyl synthesis step. The main by-product is ethyl propionate, which is difficult to separate from ethyl acrylate. However, by proper control of the feeds and reaction conditions, it is possible to keep the ethyl propionate content below 1%. Even so, this is significantly higher than the propionate content of the esters from the propylene oxidation route. [Pg.155]

In contrast to the silver process, all of the formaldehyde is made by the exothermic reaction (eq. 23) at essentially atmospheric pressure and at 300—400°C. By proper temperature control, a methanol conversion greater than 99% can be maintained. By-products are carbon monoxide and dimethyl ether, in addition to small amounts of carbon dioxide and formic acid. Overall plant yields are 88—92%. [Pg.494]

The ratio of hydrogen to carbon monoxide is controlled by shifting only part of the gas stream. After the shift, the carbon dioxide, which is formed in the gasifier and in the water gas reaction, and the sulfur compounds formed during gasification, are removed from the gas. [Pg.63]

SL/RN Process. In the SL/RN process (Fig. 4), sized iron ore, coal, and dolomite are fed to the rotary kiln wherein the coal is gasified and the iron ore is reduced. The endothermic heat of reduction and the sensible energy that is required to heat the reactants is provided by combustion of volatiles and carbon monoxide leaving the bed with air introduced into the free space above the bed. The temperature profile in the kiln is controlled by radial air ports in the preheat zone and axial air ports in the reduction zone. Part of the coal is injected through the centerline of the kiln at the discharge end. The hot reduced iron and char is discharged into an indirect rotary dmm cooler. The cooled product is screened and magnetically separated to remove char and ash. [Pg.429]

Lead sesquioxide is used as an oxidation catalyst for carbon monoxide ia exhaust gases (44,45) (see Exhaust control), as a catalyst for the preparation of lactams (46) (see Antibiotics, P-lactams), ia the manufacture of high purity diamonds (47) (see Carbon, diamond-natural), ia fireproofing compositions for poly(ethylene terephthalate) plastics (48), ia radiation detectors for x-rays and nuclear particles (49), and ia vulcanization accelerators for neoprene mbber (50). [Pg.69]

Most chromium-based catalysts are activated in the beginning of a polymerization reaction through exposure to ethylene at high temperature. The activation step can be accelerated with carbon monoxide. Phillips catalysts operate at 85—110°C (38,40), and exhibit very high activity, from 3 to 10 kg HDPE per g of catalyst (300—1000 kg HDPE/g Cr). Molecular weights and MWDs of the resins are controlled primarily by two factors, the reaction temperature and the composition and preparation procedure of the catalyst (38,39). Phillips catalysts produce HDPE with a MJM ratio of about 6—12 and MFR values of 90—120. [Pg.383]

PGM catalyst technology can also be appHed to the control of emissions from stationary internal combustion engines and gas turbines. Catalysts have been designed to treat carbon monoxide, unbumed hydrocarbons, and nitrogen oxides in the exhaust, which arise as a result of incomplete combustion. To reduce or prevent the formation of NO in the first place, catalytic combustion technology based on platinum or palladium has been developed, which is particularly suitable for appHcation in gas turbines. Environmental legislation enacted in many parts of the world has promoted, and is expected to continue to promote, the use of PGMs in these appHcations. [Pg.173]

Ladle metallurgy, the treatment of Hquid steel in the ladle, is a field in which several new processes, or new combinations of old processes, continue to be developed (19,20). The objectives often include one or more of the following on a given heat more efficient methods for alloy additions and control of final chemistry improved temperature and composition homogenisation inclusion flotation desulfurization and dephosphorization sulfide and oxide shape control and vacuum degassing, especially for hydrogen and carbon monoxide to make interstitial-free (IF) steels. Electric arcs are normally used to raise the temperature of the Hquid metal (ladle arc furnace). [Pg.380]

A fermentation route to 1-butanol based on carbon monoxide employing the anaerobic bacterium, Butyribacterium methjlotrophicum has been reported (14,15). In contrast to other commercial catalytic processes for converting synthesis gas to alcohols, the new process is insensitive to sulfur contaminants. Current productivities to butanol are 1 g/L, about 10% of that required for commercial viabiUty. Researchers hope to learn enough about the bacteria s control mechanisms to be able to use recombinant DNA to make the cells produce more butanol. [Pg.357]

The composition of the products of reactions involving intermediates formed by metaHation depends on whether the measured composition results from kinetic control or from thermodynamic control. Thus the addition of diborane to 2-butene initially yields tri-j iAbutylboraneTri-j -butylborane. If heated and allowed to react further, this product isomerizes about 93% to the tributylborane, the product initially obtained from 1-butene (15). Similar effects are observed during hydroformylation reactions however, interpretation is more compHcated because the relative rates of isomerization and of carbonylation of the reaction intermediate depend on temperature and on hydrogen and carbon monoxide pressures (16). [Pg.364]

Oxidation. Carbon monoxide can be oxidized without a catalyst or at a controlled rate with a catalyst (eq. 4) (26). Carbon monoxide oxidation proceeds explosively if the gases are mixed stoichiometticaHy and then ignited. Surface burning will continue at temperatures above 1173 K, but the reaction is slow below 923 K without a catalyst. HopcaUte, a mixture of manganese and copper oxides, catalyzes carbon monoxide oxidation at room temperature it was used in gas masks during World War I to destroy low levels of carbon monoxide. Catalysts prepared from platinum and palladium are particularly effective for carbon monoxide oxidation at 323 K and at space velocities of 50 to 10, 000 h . Such catalysts are used in catalytic converters on automobiles (27) (see Exhaust CONTHOL, automotive). [Pg.51]

The reaction between carbon monoxide and hydrogen is exothermic (Ai/gQQp. = —100.5 kJ or 24.0 kcal) and plants must be designed to remove heat efficiently. In order to control the exotherm, CO conversions are typically maintained well below the equiUbrium conversion, 45% at 523 K. This necessitates a substantial recycle of carbon monoxide and hydrogen. [Pg.51]

CAMET control catalyst was shown to obtain 80% NO reduction and 95% carbon monoxide reduction in this appHcation in the Santa Maria, California cogeneration project. The catalyst consists of a cormgated metal substrate onto which the active noble metal is evenly deposited with a washcoat. Unlike the typical 20 on titania turbine exhaust catalysts used eadier in these appHcations, the CAMET catalyst is recyclable (52). [Pg.199]

Oxychlorination of Ethylene or Dichloroethane. Ethylene or dichloroethane can be chlorinated to a mixture of tetrachoroethylene and trichloroethylene in the presence of oxygen and catalysts. The reaction is carried out in a fluidized-bed reactor at 425°C and 138—207 kPa (20—30 psi). The most common catalysts ate mixtures of potassium and cupric chlorides. Conversion to chlotocatbons ranges from 85—90%, with 10—15% lost as carbon monoxide and carbon dioxide (24). Temperature control is critical. Below 425°C, tetrachloroethane becomes the dominant product, 57.3 wt % of cmde product at 330°C (30). Above 480°C, excessive burning and decomposition reactions occur. Product ratios can be controlled but less readily than in the chlorination process. Reaction vessels must be constmcted of corrosion-resistant alloys. [Pg.24]


See other pages where Carbon monoxide control is mentioned: [Pg.224]    [Pg.224]    [Pg.1004]    [Pg.265]    [Pg.425]    [Pg.183]    [Pg.317]    [Pg.370]    [Pg.45]    [Pg.414]    [Pg.547]    [Pg.170]    [Pg.375]    [Pg.313]    [Pg.172]    [Pg.476]    [Pg.156]    [Pg.7]    [Pg.66]    [Pg.402]    [Pg.190]    [Pg.331]    [Pg.422]    [Pg.459]    [Pg.58]    [Pg.198]    [Pg.345]    [Pg.8]    [Pg.233]    [Pg.270]    [Pg.381]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Control of Carbon Monoxide Emissions

© 2024 chempedia.info