Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon lithium metal

Abstract Rice straw was catalytically gasified over nickel catalysts supported on kieselguhr. This has been done by varying the content of alkali carbonate, lithium metal (3-20wt%) and various sodium compounds. In the case which alkali metal carbonates were separately added with nickel catalyst, conversion to gas was increased in the following order of Li< Cs< Kalkali metals were used to as co-catalyst by impregnation method, gas formation was increased in the following order Cs< tC a< Li. These results showed same aspects with TPR patterns. [Pg.358]

The alkali metals of Group I are found chiefly as the chlorides (in the earth s crust and in sea water), and also as sulphates and carbonates. Lithium occurs as the aluminatesilicate minerals, spodimene and lepidolite. Of the Group II metals (beryllium to barium) beryllium, the rarest, occurs as the aluminatesilicate, beryl-magnesium is found as the carbonate and (with calcium) as the double carbonate dolomite-, calcium, strontium and barium all occur as carbonates, calcium carbonate being very plentiful as limestone. [Pg.122]

Lithium Iodide. Lithium iodide [10377-51 -2/, Lil, is the most difficult lithium halide to prepare and has few appHcations. Aqueous solutions of the salt can be prepared by carehil neutralization of hydroiodic acid with lithium carbonate or lithium hydroxide. Concentration of the aqueous solution leads successively to the trihydrate [7790-22-9] dihydrate [17023-25-5] and monohydrate [17023-24 ] which melt congmendy at 75, 79, and 130°C, respectively. The anhydrous salt can be obtained by carehil removal of water under vacuum, but because of the strong tendency to oxidize and eliminate iodine which occurs on heating the salt ia air, it is often prepared from reactions of lithium metal or lithium hydride with iodine ia organic solvents. The salt is extremely soluble ia water (62.6 wt % at 25°C) (59) and the solutions have extremely low vapor pressures (60). Lithium iodide is used as an electrolyte ia selected lithium battery appHcations, where it is formed in situ from reaction of lithium metal with iodine. It can also be a component of low melting molten salts and as a catalyst ia aldol condensations. [Pg.226]

One criterion for the anode material is that the chemical potential of lithium in the anode host should be close to that of lithium metal. Carbonaceous materials are therefore good candidates for replacing metallic lithium because of their low cost, low potential versus lithium, and wonderful cycling performance. Practical cells with LiCoOj and carbon electrodes are now commercially available. Finding the best carbon for the anode material in the lithium-ion battery remains an active research topic. [Pg.343]

The Li-SOCl2 battery consists of a lithium-metal foil anode, a porous carbon cathode, a porous non-woven glass or polymeric separator between them, and an electrolyte containing thionyl chloride and a soluble salt, usually lithium tetrachloro-aluminate. Thionyl chloride serves as both the cathode active material and the elec-... [Pg.40]

The structure and composition of the lithium surface layers in carbonate-based electrolytes have been studied extensively by many investigators [19-37], High reactivity of propylene carbonate (PC) to the bare lithium metal is expected, since its reduction on an ideal polarizable electrode takes place at much more positive potentials compared with THF and 2Me-THF [18]. Thevenin and Muller [29] found that the surface layer in LiC104/PC electrolyte is a mixture of solid Li2C03 and a... [Pg.424]

Today we have some understanding of the first lithium intercalation step into carbon and of the processes taking place on the lithium metal anode. A combination of a variety of analytical tools including di-latometry, STM, AFM, XPS, EDS, SEM, XRD, QCMB, FTIR, NMR, EPR, Raman spectroscopy, and DSC is needed in order to understand better the processes occurring at the anode/electrolyte interphase. This understanding is crucial for the development of safer and better lithium-based batteries. [Pg.452]

Table 8 shows results obtained from the application of various bulk and surface analysis methods to lithium metal at rest or after cyclization experiments, as well as at inert and carbon electrodes after cathodic polarization. The analytical methods include elemental analysis, X-ray photoelectron spectroscopy (XPS or ESCA), energy-dispersive analysis of X-rays (X-ray mi-... [Pg.481]

As to anodes, in most of the research work a generously dimensioned sheet of lithium metal has been used. Such an electrode is rather irreversible, but this is not noticed when a large excess of lithium is employed. Li-Al alloys and carbon materials inserting lithium cathodically during recharging can be used as anodes in nonaqueous solutions. Zinc has been used in polymer batteries with aqueous electrolyte (on the basis of polyaniline). [Pg.463]

Carbon, Lithium tetrachloroaluminate, Sulfinyl chloride Kilroy, W. P. et al., J. Electrochem. Soc., 1981, 128, 934-935 In electric battery systems, lithium is inert to the electrolyte components in absence of carbon, but in presence of over 10% of carbon (pre-mixed by grinding with the metal), contact with the electrolyte mixture leads to ignition or explosion. [Pg.1750]

The activated nickel powder is easily prepared by stirring a 1 2.3 mixture of NiL and lithium metal under argon with a catalytic amount of naphthalene (1(7 mole % based on nickel halide) at room temperature for 12 h in DME. The resulting black slurry slowly settles after stirring is stopped and the solvent can be removed via cannula if desired. Washing with fresh DME will remove the naphthalene as well as most of the lithium salts. For most of the nickel chemistry described below, these substances did not affect the reactions and hence they were not removed. The activated nickel slurries were found to undergo oxidative addition with a wide variety of aryl, vinyl, and many alkyl carbon halogen bonds. [Pg.231]

The Li-Ion system was developed to eliminate problems of lithium metal deposition. On charge, lithium metal electrodes deposit moss-like or dendrite-like metallic lithium on the surface of the metal anode. Once such metallic lithium is deposited, the battery is vulnerable to internal shorting, which may cause dangerous thermal run away. The use of carbonaceous material as the anode active material can completely prevent such dangerous phenomenon. Carbon materials can intercalate lithium into their structure (up to LiCe). The intercalation reaction is very reversible and the intercalated carbons have a potential about 50mV from the lithium metal potential. As a result, no lithium metal is found in the Li-Ion cell. The electrochemical reactions at the surface insert the lithium atoms formed at the electrode surface directly into the carbon anode matrix (Li insertion). There is no lithium metal, only lithium ions in the cell (this is the reason why Li-Ion batteries are named). Therefore, carbonaceous material is the key material for Li-Ion batteries. Carbonaceous anode materials are the key to their ever-increasing capacity. No other proposed anode material has proven to perform as well. The carbon materials have demonstrated lower initial irreversible capacities, higher cycle-ability and faster mobility of Li in the solid phase. [Pg.179]

CARBON REPLACES METALLIC LITHIUM IN RECHARGEABLE LITHIUM BATTERIES... [Pg.191]

Figure 20. SEI formation on different anodes for rechargeable Li batteries (A) lithium metal, (B) graphitic carbon, and (C) metals and intermetallics. Different colors of the SEI indicate SEI products formed at different stages of charge and discharge (and do not indicate different composition) [42],... Figure 20. SEI formation on different anodes for rechargeable Li batteries (A) lithium metal, (B) graphitic carbon, and (C) metals and intermetallics. Different colors of the SEI indicate SEI products formed at different stages of charge and discharge (and do not indicate different composition) [42],...
Chemical Incompatibility Hazards While N2 and C02 may act as inerts with respect to many combustion reactions, they are far from being chemically inert. Only the noble gases (eg., Ar and He) can, for practical purposes, be regarded as true inerts. Frank (Frank, Inerting for Explosion Prevention, Proceedings of the 38th Annual Loss Prevention Symposium, AIChE, 2004) lists a number of incompatibilities for N2, C02, and CO (which can be present in gas streams from combustion-based inert gas generators). Notable incompatibilities for N2 are lithium metal and titanium metal (which is reported to burn in N2). C02 is incompatible with many metals (eg., aluminum and the alkali metals), bases, and amines, and it forms carbonic acid in water,... [Pg.37]

Preparative electrochemical reduction of aryltrimethylsilanes in methyl-amine in the presence of LiCl gives the Birch-type products, 1,4-cyclohexan-dienes (Scheme 34) [6], A mechanism involving the electrochemical formation of lithium metal which chemically reduces the substrate has been suggested. The hydrogen atom is introduced on the carbon adjacent to the silicon preferentially. This regioselectivity is consistent with the spin density of the anion radical determined by ESR spectroscopy (Sect. 2.2.1). [Pg.81]

A second major event in the saga of polymer conductors was the discovery that the doping processes of polyacetylene could be promoted and driven electrochemically in a reversible fashion by polarising the polymer film electrode in a suitable electrochemical cell (MacDiarmid and Maxfield, 1987). Typically, a three-electrode cell, containing the (CH) film as the working electrode, a suitable electrolyte (e.g. a non-aqueous solution of lithium perchlorate in propylene carbonate, here abbreviated to LiC104-PC) and suitable counter (e.g. lithium metal) and reference (e.g. again Li) electrodes, can be used. [Pg.234]


See other pages where Carbon lithium metal is mentioned: [Pg.220]    [Pg.224]    [Pg.225]    [Pg.227]    [Pg.534]    [Pg.311]    [Pg.108]    [Pg.204]    [Pg.339]    [Pg.347]    [Pg.353]    [Pg.384]    [Pg.390]    [Pg.408]    [Pg.427]    [Pg.429]    [Pg.429]    [Pg.440]    [Pg.450]    [Pg.804]    [Pg.1510]    [Pg.1317]    [Pg.353]    [Pg.10]    [Pg.198]    [Pg.274]    [Pg.334]    [Pg.336]    [Pg.315]    [Pg.308]    [Pg.301]    [Pg.158]   
See also in sourсe #XX -- [ Pg.2 , Pg.5 , Pg.5 ]

See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.5 , Pg.11 ]




SEARCH



Carbon—hydrogen bonds lithium metal

Carbon—lead bonds lithium metal

Carbon—nitrogen bonds lithium metal

Carbon—oxygen bonds lithium metal

Carbon—phosphorus bonds lithium metal

Carbon—silicon bonds lithium metal

Carbon—sulfur bonds lithium metal

Lithium Mineral, Carbonate, and Metal Producers

Lithium carbon

Lithium carbonate

Lithium metal

Lithium metal carbon dioxide

Lithium metal carbon halides

Lithium metal carbon, elemental

Metallic lithium

Metals lithium metal

© 2024 chempedia.info