Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide, hydrolysis

The mixture of excipients that constitute an emulsion forms an excellent substrate for the growth of bacteria and fungi. Degradation due to microbial contamination can markedly affect both the physical and chemical stability resulting in color and odor changes (rancidification), the production of gases (mainly carbon dioxide), hydrolysis of any ester... [Pg.801]

It must be kept under an atmosphere of nitrogen or carbon dioxide it reduces, for example, Fe(III) to Fe(II) and nitro-organic compounds RNO2 to amines RNH2 (it may be used quantitatively to estimate nitro-compounds). In neutral solution, hydrolysis occurs to give species such as [Ti(0H)(H20)s], and with alkali an insoluble substance formulated as Ti203 aq is produced this is rapidly oxidised in air. [Pg.372]

If the reaction mixture used in the above preparation of formic acid is heated to 190-200°, the glyceryl monoformate which has escaped hydrolysis undergoes decomposition, with the loss of carbon dioxide and water, and the... [Pg.114]

Hydrolysis. Ethyl acetoacetate when treated w ith cold dilute sodium hydroxide solution gives the sodium salt of acetoacetic acid. This acid is unstable, and readily breaks down into acetone and carbon dioxide it is of considerable... [Pg.270]

Ketonic Hydrolysis. Hot dilute caustic alkalis or hydrochloric acid first hydrolyse off the ethyl group, and then remove carbon dioxide, a mono- or di-substituted acetone being thus obtained ... [Pg.270]

Of all the monosaccharides d (+) glucose is the best known most important and most abundant Its formation from carbon dioxide water and sunlight is the central theme of photosynthesis Carbohydrate formation by photosynthesis is estimated to be on the order of 10 tons per year a source of stored energy utilized directly or indi rectly by all higher forms of life on the planet Glucose was isolated from raisins m 1747 and by hydrolysis of starch m 1811 Its structure was determined in work culmi nating m 1900 by Emil Fischer... [Pg.1032]

Sodium acetate reacts with carbon dioxide in aqueous solution to produce acetic anhydride and sodium bicarbonate (49). Under suitable conditions, the sodium bicarbonate precipitates and can be removed by centrifugal separation. Presumably, the cold water solution can be extracted with an organic solvent, eg, chloroform or ethyl acetate, to furnish acetic anhydride. The half-life of aqueous acetic anhydride at 19°C is said to be no more than 1 h (2) and some other data suggests a 6 min half-life at 20°C (50). The free energy of acetic anhydride hydrolysis is given as —65.7 kJ/mol (—15.7 kcal/mol) (51) in water. In wet chloroform, an extractant for anhydride, the free energy of hydrolysis is strangely much lower, —50.0 kJ/mol (—12.0 kcal/mol) (51). Half-life of anhydride in moist chloroform maybe as much as 120 min. Ethyl acetate, chloroform, isooctane, and / -octane may have promise for extraction of acetic anhydride. Benzene extracts acetic anhydride from acetic acid—water solutions (52). [Pg.78]

Although catalytic hydration of ethylene oxide to maximize ethylene glycol production has been studied by a number of companies with numerous materials patented as catalysts, there has been no reported industrial manufacture of ethylene glycol via catalytic ethylene oxide hydrolysis. Studied catalysts include sulfonic acids, carboxyUc acids and salts, cation-exchange resins, acidic zeoHtes, haUdes, anion-exchange resins, metals, metal oxides, and metal salts (21—26). Carbon dioxide as a cocatalyst with many of the same materials has also received extensive study. [Pg.359]

Hydrolysis of Peroxycarboxylic Systems. Peroxyacetic acid [79-21-0] is produced commercially by the controlled autoxidation of acetaldehyde (qv). Under hydrolytic conditions, it forms an equiHbrium mixture with acetic acid and hydrogen peroxide. The hydrogen peroxide can be recovered from the mixture by extractive distillation (89) or by precipitating as the calcium salt followed by carbonating with carbon dioxide. These methods are not practiced on a commercial scale. Alternatively, the peroxycarboxyHc acid and alcohols can be treated with an estetifying catalyst to form H2O2 and the corresponding ester (90,91) (see Peroxides and peroxy compounds). [Pg.477]

Water hydroly2es pure diketene only slowly to give acetoacetic acid [541-50-4] which quickly decomposes to acetone and carbon dioxide, but increasing the pH or adding catalysts (amines, palladium compounds) increases the rate of hydrolysis. The solvolysis of diketene in ammonia results in aceto acetamide [5977-14-0] if used in stoichiometric amounts (99), and P-arninocrotonarnide [15846-25-0] if used in excess (100). [Pg.478]

The estimation of alkoxy groups is not such a simple task. One method (26,68) involves hydrolysis and oxidation of the Hberated alcohol with excess standard potassium dichromate solution. The excess may then be estimated iodometrically. This method is suitable only for methoxides, ethoxides, and isopropoxides quantitative conversion to carbon dioxide, acetic acid, and acetone, respectively, takes place. An alternative method for ethoxides is oxidation followed by distillation, and titration of the Hberated acetic acid. [Pg.28]

Raw juice is heated, treated sequentially with lime (CaO) and carbon dioxide, and filtered. This accomplishes three objectives (/) microbial activity is terminated (2) the thin juice produced is clear and only lightly colored and (J) the juice is chemically stabilized so that subsequent processing steps of evaporation and crystalliza tion do not result in uncontrolled hydrolysis of sucrose, scaling of heating surfaces, or coprecipitation of material other than sucrose. [Pg.26]

To effectively remove carbonyl sulfide from a gas stream, special alkaline scmbbiag Hquors are used. These contain sodium aluminate or sodium plumbite, or they are made of alkaUes with a hydrolysis catalyst based on Zn, Fe, Ni, or Cu. Diethanolamine, diglycolamine, or other alkanolamines (qv) mixed with water remove carbonyl sulfide from sour, ie, acid-gas-containing, gas streams (25,26) (see Carbon dioxide). [Pg.130]

Sutures are required to hold tissues together until the tissues can heal adequately to support the tensions exerted on the wound duting normal activity. Sutures can be used ia skin, muscle, fat, organs, and vessels. Nonabsorbable sutures are designed to remain ia the body for the life of the patient, and are iadicated where permanent wound support is required. Absorbable sutures are designed to lose strength gradually over time by chemical reactions such as hydrolysis. These sutures are ultimately converted to soluble components that are then metabolized and excreted ia urine or feces, or as carbon dioxide ia expired air. Absorbable sutures are iadicated only where temporary wound support is needed. [Pg.265]

Carbamic acid [463-77-4] NH2COOH, is the hydrated form of isocyanic acid [75-13-8] H—N=C=0. It is not known in the free state hydrolysis rapidly gives ammonia and carbon dioxide. [Pg.434]

Ethylene Oxide Recovery. An economic recovery scheme for a gas stream that contains less than 3 mol % ethylene oxide (EO) must be designed. It is necessary to achieve nearly complete removal siace any ethylene oxide recycled to the reactor would be combusted or poison the carbon dioxide removal solution. Commercial designs use a water absorber foUowed by vacuum or low pressure stripping of EO to minimize oxide hydrolysis. Several patents have proposed improvements to the basic recovery scheme (176—189). Other references describe how to improve the scmbbiag efficiency of water or propose alternative solvents (180,181). [Pg.459]


See other pages where Carbon dioxide, hydrolysis is mentioned: [Pg.655]    [Pg.655]    [Pg.224]    [Pg.99]    [Pg.581]    [Pg.622]    [Pg.287]    [Pg.106]    [Pg.655]    [Pg.655]    [Pg.224]    [Pg.99]    [Pg.581]    [Pg.622]    [Pg.287]    [Pg.106]    [Pg.351]    [Pg.275]    [Pg.487]    [Pg.567]    [Pg.380]    [Pg.359]    [Pg.473]    [Pg.292]    [Pg.293]    [Pg.54]    [Pg.130]    [Pg.131]    [Pg.131]    [Pg.468]    [Pg.70]    [Pg.86]    [Pg.522]    [Pg.134]    [Pg.88]    [Pg.1598]    [Pg.2254]    [Pg.882]    [Pg.5]   
See also in sourсe #XX -- [ Pg.277 , Pg.278 ]




SEARCH



Carbonate hydrolysis

© 2024 chempedia.info