Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic anhydride hydrolysis

Sodium acetate reacts with carbon dioxide in aqueous solution to produce acetic anhydride and sodium bicarbonate (49). Under suitable conditions, the sodium bicarbonate precipitates and can be removed by centrifugal separation. Presumably, the cold water solution can be extracted with an organic solvent, eg, chloroform or ethyl acetate, to furnish acetic anhydride. The half-life of aqueous acetic anhydride at 19°C is said to be no more than 1 h (2) and some other data suggests a 6 min half-life at 20°C (50). The free energy of acetic anhydride hydrolysis is given as —65.7 kJ/mol (—15.7 kcal/mol) (51) in water. In wet chloroform, an extractant for anhydride, the free energy of hydrolysis is strangely much lower, —50.0 kJ/mol (—12.0 kcal/mol) (51). Half-life of anhydride in moist chloroform maybe as much as 120 min. Ethyl acetate, chloroform, isooctane, and / -octane may have promise for extraction of acetic anhydride. Benzene extracts acetic anhydride from acetic acid—water solutions (52). [Pg.78]

P4.07.Q8. ACETIC ANHYDRIDE HYDROLYSIS. ADIABATIC BATCH AND CSTR... [Pg.398]

Table 9.4. Input Data for Acetic Anhydride Hydrolysis... Table 9.4. Input Data for Acetic Anhydride Hydrolysis...
Relative reactivity of hindered and unhindered bases k(hindered)/ kfunhindered) same order for bases of same >Ka if general base catalysis, but this ratio very small for nucleophilic catalysis 2,6-Lutidine is much less effective than pyridine in catalysis of acetic anhydride hydrolysis 91... [Pg.144]

The potassium salt of (4/P-4/P-0-) ring acid (5.251b) is formed by the dehydration of two molecules of H4P2O6 (4/P-4/P acid) with acetic anhydride. Hydrolysis of the ring salts in NaOH at 25°C opens the ring to give salts of 4/P-4/P-0-4/P-4/P acid (5.251c). [Pg.265]

Although the acetylation of alcohols and amines by acetic anhydride is almost invariably carried out under anhydrous conditions owing to the ready hydrolysis of the anhydride, it has been shown by Chattaway (1931) that phenols, when dissolved in aqueous sodium hydroxide solution and shaken with acetic anhydride, undergo rapid and almost quantitative acetylation if ice is present to keep the temperature low throughout the reaction. The success of this method is due primarily to the acidic nature of the phenols, which enables them to form soluble sodium derivatives, capable of reacting with the acetic... [Pg.109]

In general, however, the diacetyl derivatives are unstable in the presence of water, undergoing hydrolysis to the mono-acetyl compound, so that when they (or a mixture of mono- and di-acetyl derivatives) are crystallised from an aqueous solvent, e.g., dilute alcohol, only the mono-acetyl derivative is obtained. A further disadvantage of the use of acetic anhydride in the absence of a solvent is that all the impm-ities in the amine are generally present in the reaction product. Heavily substituted amines, t.g., 2 4 6-tribromoaniline, react extremely slowly with acetic anhydride, but in the presence of a few drops of concentrated sulphuric acid as catalyst acetylation occurs rapidly, for example ... [Pg.576]

The disadvantages attending the use of acetic anhydride alone are absent when the acetylation is conducted in aqueous solution according to the following procedure. The amine is dissolved in water containing one equivalent of hydrochloric acid, slightly more than one equivalent of acetic anhydride is added to the solution, followed by enough sodium acetate to neutralise the hydrochloric acid, and the mixture is shaken. The free amine which is liberated is at once acetylated. It must be pointed out that the hydrolysis of acetic anhydride at room temperature is extremely slow and that the free amine reacts much more readily with the anhydride than does the water this forms the experimental basis for the above excellent method of acetylation. [Pg.576]

Crystalline derivatives, suitable for identification and characterisation are dealt with in Section IV, 114, but the preparation of the following, largely liquid, derivatives will be described in the following Sections. When phenols are dissolved in aqueous sodium hydroxide solution and shaken with acetic anhydride, they undergo rapid and almost quantitative acetylation if the temperature is kept low throughout the reaction. This is because phenols form readily soluble sodium derivatives, which react with acetic anhydride before the latter undergoes appreciable hydrolysis, for example ... [Pg.665]

Hydrolysis of the azlactone leads to the acylaminooinnamic acid the latter may be be reduced catal3rtlcally (Adams PtOj catalyst 40 lb. p.s.i.) and then hydrolysed by hydrochloric acid to the amino acid. Alternatively, the azlactone (say, of a-benzylaminocinnamic acid) may undergo reduction and cleavage with phosphorus, hydriodic acid and acetic anhydride directly to the a-amino acid (d/ p phenylalanine). [Pg.908]

It may be converted into dibromofluorescein diacetate as follows. Reflux a mixture of 10 g. of dibromofluorescein, 40 ml. of redistilled acetic anhydride and 1 drop of concentrated sulphuric acid for 1 hour, pour into water, filter, wash, and dry the resulting diacetate (95 per cent, yield) has m.p. 210°. Upon recrystallisation from acetic anhydride or nitrobenzene, the pure diacetate (colourless or pale yellow plates), m.p. 211°, is obtained. Hydrolysis with alcoholic sulphuric acid gives a quantitative yield of pure dibromofluorescein, m.p. 285°. [Pg.987]

The Curtms rearrangement has been used to prepare 5-aminothiazole (11) (60.61), 4-methyl-5-aminothiazole. 2-chloro-5-aminothiazole (58), and 2.4-dimethyl-5-aminothiazole (62) (Scheme 11). Heating the corresponding azides yield carbamates that resist hydrolysis but react with acetic anhydride to give the 5-acetylaminothiazoles. [Pg.16]

Anilino vinyl derivatives of thiazolium (30, R = H) or acetanilido (30, R = C0CH3), as well as formyl methylene 30b (methods E-G), give asymmetrical dyes when condensed with a methyl reactive group of another species (Scheme 42). Mesosubstituted symmetrical or unsymmet-rical thiazolocyanines are obtainable via /S-alkylmercaptovinyl thiazolium derivatives (32) (methods H and I) (Scheme 43). a or /S carbon atoms of the trimethine chain can be substituted by acetyl when a dye is treated with acetic anhydride (method L). The hydrolysis of neocyanines lead to trimethine cyanine by fractional elimination of a composant chain (method K). [Pg.55]

Acid anhydrides are more stable and less reactive than acyl chlorides Acetyl chlo ride for example undergoes hydrolysis about 100 000 times more rapidly than acetic anhydride at 25°C... [Pg.845]

The acetylation reaction, [1], is carried out in pyridine to avoid the hydrolysis of acetic anhydride by water. After the acetylation is complete, water is added to convert the remaining acetic anhydride to acetic acid, [2]. [Pg.303]

Nitration and halogenation of furfural occurs under carehiUy controlled conditions with introduction of the substituent at the open 5-position (24,25). Nitration of furfural is usually carried out in the presence of acetic anhydride, resulting in the stable compound, 5-nitrofurfuryhdene diacetate (26,27). The free aldehyde is isolated by hydrolysis and must be used immediately in a reaction because it is not very stable. [Pg.77]

About half of the wodd production comes from methanol carbonylation and about one-third from acetaldehyde oxidation. Another tenth of the wodd capacity can be attributed to butane—naphtha Hquid-phase oxidation. Appreciable quantities of acetic acid are recovered from reactions involving peracetic acid. Precise statistics on acetic acid production are compHcated by recycling of acid from cellulose acetate and poly(vinyl alcohol) production. Acetic acid that is by-product from peracetic acid [79-21-0] is normally designated as virgin acid, yet acid from hydrolysis of cellulose acetate or poly(vinyl acetate) is designated recycle acid. Indeterrninate quantities of acetic acid are coproduced with acetic anhydride from coal-based carbon monoxide and unknown amounts are bartered or exchanged between corporations as a device to lessen transport costs. [Pg.69]

By-product acetic acid is obtained chiefly from partial hydrolysis of cellulose acetate [9004-35-7]. Lesser amounts are obtained through the reaction of acetic anhydride and cellulose. Acetylation of saHcyHc acid [69-72-7] produces one mole of acetic acid per mole of product and the oxidation of allyl alcohol using peracetic acid to yield glycerol furnishes by-product acid, but the net yield is low. [Pg.69]

Under sufficient pressure to permit a Hquid phase at 55—56°C, the acetaldehyde monoperoxyacetate decomposes nearly quantitatively into anhydride and water in the presence of copper. Anhydride hydrolysis is unavoidable, however, because of the presence of water. When the product is removed as a vapor, an equiUbrium concentration of anhydride higher than that of acetic acid remains in the reactor. Water is normally quite low. Air entrains the acetic anhydride and water as soon as they form. [Pg.76]

High purity acetaldehyde is desirable for oxidation. The aldehyde is diluted with solvent to moderate oxidation and to permit safer operation. In the hquid take-off process, acetaldehyde is maintained at 30—40 wt % and when a vapor product is taken, no more than 6 wt % aldehyde is in the reactor solvent. A considerable recycle stream is returned to the oxidation reactor to increase selectivity. Recycle air, chiefly nitrogen, is added to the air introducted to the reactor at 4000—4500 times the reactor volume per hour. The customary catalyst is a mixture of three parts copper acetate to one part cobalt acetate by weight. Either salt alone is less effective than the mixture. Copper acetate may be as high as 2 wt % in the reaction solvent, but cobalt acetate ought not rise above 0.5 wt %. The reaction is carried out at 45—60°C under 100—300 kPa (15—44 psi). The reaction solvent is far above the boiling point of acetaldehyde, but the reaction is so fast that Httle escapes unoxidized. This temperature helps oxygen absorption, reduces acetaldehyde losses, and inhibits anhydride hydrolysis. [Pg.76]

Manufacture. Most chloroacetic acid is produced by the chlorination of acetic acid using a suitable catalyst such as acetic anhydride (9—12). The remainder is produced by the hydrolysis of trichloroethylene with sulfuric acid (13,14) or by reaction of chloroacetyl chloride with water. [Pg.88]

Bromoacetic acid can be prepared by the bromination of acetic acid in the presence of acetic anhydride and a trace of pyridine (55), by the HeU-VoUiard-Zelinsky bromination cataly2ed by phosphoms, and by direct bromination of acetic acid at high temperatures or with hydrogen chloride as catalyst. Other methods of preparation include treatment of chloroacetic acid with hydrobromic acid at elevated temperatures (56), oxidation of ethylene bromide with Aiming nitric acid, hydrolysis of dibromovinyl ether, and air oxidation of bromoacetylene in ethanol. [Pg.90]

Cellulose triacetate is obtained by the esterification of cellulose (qv) with acetic anhydride (see Cellulose esters). Commercial triacetate is not quite the precise chemical entity depicted as (1) because acetylation does not quite reach the maximum 3.0 acetyl groups per glucose unit. Secondary cellulose acetate is obtained by hydrolysis of the triacetate to an average degree of substitution (DS) of 2.4 acetyl groups per glucose unit. There is no satisfactory commercial means to acetylate direcdy to the 2.4 acetyl level and obtain a secondary acetate that has the desired solubiUty needed for fiber preparation. [Pg.290]

Many other polymerization processes have been patented, but only some of them appear to be developed or under development ia 1996. One large-scale process uses an acid montmorrillonite clay and acetic anhydride (209) another process uses strong perfiuorosulfonic acid reski catalysts (170,210). The polymerization product ia these processes is a poly(tetramethylene ether) with acetate end groups, which have to be removed by alkaline hydrolysis (211) or hydrogenolysis (212). If necessary, the product is then neutralized, eg, with phosphoric acid (213), and the salts removed by filtration. Instead of montmorrillonite clay, other acidic catalysts can be used, such as EuUer s earth or zeoHtes (214—216). [Pg.364]


See other pages where Acetic anhydride hydrolysis is mentioned: [Pg.60]    [Pg.212]    [Pg.278]    [Pg.283]    [Pg.263]    [Pg.443]    [Pg.263]    [Pg.159]    [Pg.159]    [Pg.60]    [Pg.212]    [Pg.278]    [Pg.283]    [Pg.263]    [Pg.443]    [Pg.263]    [Pg.159]    [Pg.159]    [Pg.451]    [Pg.454]    [Pg.75]    [Pg.208]    [Pg.374]   
See also in sourсe #XX -- [ Pg.157 , Pg.158 , Pg.187 , Pg.196 , Pg.199 , Pg.200 , Pg.217 , Pg.219 , Pg.221 , Pg.222 , Pg.224 , Pg.245 , Pg.277 , Pg.280 , Pg.281 , Pg.282 , Pg.283 , Pg.284 , Pg.285 ]

See also in sourсe #XX -- [ Pg.12 , Pg.72 , Pg.206 , Pg.213 ]

See also in sourсe #XX -- [ Pg.14 , Pg.15 , Pg.17 , Pg.85 ]

See also in sourсe #XX -- [ Pg.167 , Pg.172 , Pg.186 , Pg.199 , Pg.240 ]




SEARCH



Acetals hydrolysis

Acetates hydrolysis

Acetic benzoic anhydride, hydrolysis

Acetic hydrolysis

Acetic propionic anhydride, hydrolysis

Acetyl chloride, acetic anhydride hydrolysis

Anhydrides hydrolysis

Example 1 Hydrolysis of acetic anhydride

HYDROL - Batch Reactor Hydrolysis of Acetic Anhydride

Hydrolysis of acetic anhydride

© 2024 chempedia.info