Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon cycles, global atmosphere

In recent years innumerable publications have dealt with the natural carbon cycle and its alteration by human activities. Some summary works of interest in this chapter are Atmospheric Carbon Dioxide and the Global Carbon Cycle (ed. Trabalka, 1985), The Carbon Cycle and Atmospheric CO2 Natural Variations, Archean to Present (eds. Sundquist and Broecker, 1985), Chemical Cycles in the Evolution of the Earth (eds. Gregor, Garrels, Mackenzie, and Maynard, 1988), History of the Earth s Atmosphere (Budyko, Ronov, and Yanshin, 1985), and The Chemical Evolution of the Atmosphere and Oceans (Holland, 1984). The interested reader is referred to these volumes for further discussion of material presented here. [Pg.511]

Keeling R. F., Najjar R. P., Bender M. E., and Tans P. P. (1993) What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochem. Cycles 7, 37-67. [Pg.4417]

Fluctuations in as and/, are accomplished by change in several components of the global marine carbon cycle, including atmospheric CO2 concentrations, sea surface... [Pg.642]

Amthor, J. S. (1995). Terrestrial higher-plant response to increasing atmospheric [COi] in relation to the global carbon cycle. Global Change Biol. 1,243-274. [Pg.314]

Carbon. Most of the Earth s supply of carbon is stored in carbonate rocks in the Hthosphere. Normally the circulation rate for Hthospheric carbon is slow compared with that of carbon between the atmosphere and biosphere. The carbon cycle has received much attention in recent years as a result of research into the possible relation between increased atmospheric carbon dioxide concentration, most of which is produced by combustion of fossil fuel, and the "greenhouse effect," or global warming. Extensive research has been done on the rate at which carbon dioxide might be converted to cellulose and other photosyntheticaHy produced organic compounds by various forms of natural and cultivated plants. Estimates also have been made of the rate at which carbon dioxide is released to soil under optimum conditions by various kinds of plant cover, such as temperature-zone deciduous forests, cultivated farm crops, prairie grassland, and desert vegetation. [Pg.200]

Human interaction with the global cycle is most evident in the movement of the element carbon. The burning of biomass, coal, oil, and natural gas to generate heat and electricity has released carbon to the atmosphere and oceans in the forms of CO2 and carbonate. Because of the relatively slow... [Pg.99]

The Table of Contents for this collection will facilitate this discussion. Notice that the papers are grouped into the categories of Atmospheric, Aquatic and Terrestrial Components, Global Carbon Cycle and Climate Change, and Global Environmental Science Education. The reader may want to consider the various chemical species studied in each paper. Next, the reader may wish to group the papers by whether they address the source or the receptor, the transport or transformation processes for the chemical species. Finally, the reader needs to establish the time scales and the spatial resolution used. [Pg.16]

Figure 1. Changes in global climate due to increased atmospheric CO2 will alter carbon cycle processes in land, continent margins, and oceans, which will in turn effect the atmospheric C02concentration. Processes that may have effects large enough to Eilter future projections of atmospheric CO2 are listed under their geographic region. Figure 1. Changes in global climate due to increased atmospheric CO2 will alter carbon cycle processes in land, continent margins, and oceans, which will in turn effect the atmospheric C02concentration. Processes that may have effects large enough to Eilter future projections of atmospheric CO2 are listed under their geographic region.
Figure 1. The global carbon cycle. Estimates of reservoir size and annual fluxes are from Post et al. (4), Vegetation carbon reservoir was estimated from latest carbon density estimates. All values except the atmospheric reservoir are approximate only. All values are in gigatons. Fluxes are next to the arrows and are in gigatons ear. Figure 1. The global carbon cycle. Estimates of reservoir size and annual fluxes are from Post et al. (4), Vegetation carbon reservoir was estimated from latest carbon density estimates. All values except the atmospheric reservoir are approximate only. All values are in gigatons. Fluxes are next to the arrows and are in gigatons ear.
Dead vegetation also afreets the global carbon cycle. Dead organic matter decomposes, releasing carbon dioxide to the atmosphere. Rates of decomposition vary with material, location, and climate. Non-woody organic matter decomposes rapidly woody organic matter slowly. Decomposition tends to occur faster at the soil surface than below. Decomposition is relatively fast in warm moist climates. In cold climates and in wetlands, decomposition is so slow that there is a net increase of stored carbon in the soil and organic soils called, "histosols, are formed. [Pg.416]

The most common way in which the global carbon budget is calculated and analyzed is through simple diagrammatical or mathematical models. Diagrammatical models usually indicate sizes of reservoirs and fluxes (Figure 1). Most mathematical models use computers to simulate carbon flux between terrestrial ecosystems and the atmosphere, and between oceans and the atmosphere. Existing carbon cycle models are simple, in part, because few parameters can be estimated reliably. [Pg.417]

Several studies, based on models, examined the effects of land-use change on the global carbon cycle and conclude that there is a net release of carbon due to land clearing. However, the results and conclusions of these studies are based on assumed sizes of vegetation carbon pools which are inputs to the models. For example, Melillo et al. 24) concluded that boreal and temperate deciduous forests of the northern hemisphere are net sources of atmospheric carbon. Their analysis used values for carbon density derived by Whittaker and Likens 19) from work by Rodin and Bazilevich (27). Rodin and Bazilevich extrapolated results of small, unrelated studies in Europe and the USSR to estimate total biomass of Eurasian boreal and temperate deciduous forests. Their estimates have since been extrapolated to forests worldwide and are used often today. [Pg.419]

Bjorkstrom, A. 1979. A model of CO2 interaction between atmosphere,oceans, and land biota. In The Global Carbon Cycle, Bolin, B. Degens, E. T. Kempe, S. Ketner, P., Eds. SCOPE 13 J Wiley Sons New York, NY, 1979 pp 403-457. [Pg.424]

Budgets and cycles can be considered on very different spatial scales. In this book we concentrate on global, hemispheric and regional scales. The choice of a suitable scale (i.e. the size of the reservoirs), is determined by the goals of the analysis as well as by the homogeneity of the spatial distribution. For example, in carbon cycle models it is reasonable to consider the atmosphere as one reservoir (the concentration of CO2 in the atmosphere is fairly uniform). On the other hand, oceanic carbon content and carbon exchange processes exhibit large spatial variations and it is reasonable to separate the... [Pg.10]

Rainwater and snowmelt water are primary factors determining the very nature of the terrestrial carbon cycle, with photosynthesis acting as the primary exchange mechanism from the atmosphere. Bicarbonate is the most prevalent ion in natural surface waters (rivers and lakes), which are extremely important in the carbon cycle, accoxmting for 90% of the carbon flux between the land surface and oceans (Holmen, Chapter 11). In addition, bicarbonate is a major component of soil water and a contributor to its natural acid-base balance. The carbonate equilibrium controls the pH of most natural waters, and high concentrations of bicarbonate provide a pH buffer in many systems. Other acid-base reactions (discussed in Chapter 16), particularly in the atmosphere, also influence pH (in both natural and polluted systems) but are generally less important than the carbonate system on a global basis. [Pg.127]

Baes, C. F., Bjdrkstrom, A. and MuIhoUand, P. J. (1985). Uptake of carbon dioxide by the oceans. In "Atmospheric Carbon Dioxide and the Global Carbon Cycle" (J. R. Trabalka, ed.). Report DOE/ ER-0239, US Department of Energy, Office of Energy Research, Washington, DC. [Pg.273]

This treatment of the carbon cycle is intended to give an account of the fundamental aspects of the carbon cycle from a global perspective. After a presentation of the main characteristics of carbon on Earth (Section 11.2), four sections follow 11.3, about the carbon reservoirs within the atmosphere, the hydrosphere, the biosphere... [Pg.282]

The exchange of CO2 between the atmosphere and terrestrial biota is one of the prime links in the global carbon cycle. This is seen by studying the variations of C in the atmosphere. Figure 11-14 presents atmospheric A C for the years... [Pg.299]

Bjdrkstrom, A. (1979). A model of CO2 interaction between atmosphere, oceans, and land biota. In "The Global Carbon Cycle" (B. Bolin, E. T. Degens, S. Kempe, and P. Ketner, eds), pp. 403-457. Wiley, New York. [Pg.309]


See other pages where Carbon cycles, global atmosphere is mentioned: [Pg.611]    [Pg.92]    [Pg.61]    [Pg.13]    [Pg.18]    [Pg.102]    [Pg.100]    [Pg.18]    [Pg.339]    [Pg.392]    [Pg.393]    [Pg.397]    [Pg.398]    [Pg.408]    [Pg.412]    [Pg.412]    [Pg.413]    [Pg.416]    [Pg.416]    [Pg.417]    [Pg.419]    [Pg.423]    [Pg.463]    [Pg.282]    [Pg.284]    [Pg.307]    [Pg.308]    [Pg.311]   
See also in sourсe #XX -- [ Pg.567 ]




SEARCH



Atmosphere carbon

Atmosphere cycle

Carbon atmospheric

Carbon cycle

Carbon cycle atmospheric

Carbon cycle, global

Carbon cycling

Cycling atmospheric

Global atmosphere

Global cycle

© 2024 chempedia.info