Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon cycle atmospheric

Kondratyev K.Ya. and Isidorov V.A. (2001). Global carbon cycle. Atmosphere and Ocean Optics, 14(1), 1-10 [in Russian],... [Pg.536]

One of the things that environmental scientists do IS to keep track of important elements in the biosphere—in what form do these ele ments normally occur to what are they transformed and how are they returned to their normal state Careful studies have given clear although compli cated pictures of the nitrogen cycle the sulfur cy cle and the phosphorus cycle for example The carbon cycle begins and ends with atmospheric carbon dioxide It can be represented in an abbrevi ated form as... [Pg.66]

Carbon. Most of the Earth s supply of carbon is stored in carbonate rocks in the Hthosphere. Normally the circulation rate for Hthospheric carbon is slow compared with that of carbon between the atmosphere and biosphere. The carbon cycle has received much attention in recent years as a result of research into the possible relation between increased atmospheric carbon dioxide concentration, most of which is produced by combustion of fossil fuel, and the "greenhouse effect," or global warming. Extensive research has been done on the rate at which carbon dioxide might be converted to cellulose and other photosyntheticaHy produced organic compounds by various forms of natural and cultivated plants. Estimates also have been made of the rate at which carbon dioxide is released to soil under optimum conditions by various kinds of plant cover, such as temperature-zone deciduous forests, cultivated farm crops, prairie grassland, and desert vegetation. [Pg.200]

Like all matter, carbon can neither be created nor destroyed it can just be moved from one place to another. The carbon cycle depicts the various places where carbon can be found. Carbon occurs in the atmosphere, in the ocean, in plants and animals, and in fossil fuels. Carbon can be moved from the atmosphere into either producers (through the process of photosynthesis) or the ocean (through the process of diffusion). Some producers will become fossil fuels, and some will be eaten by either consumers or decomposers. The carbon is returned to the atmosphere when consumers respire, when fossil fuels are burned, and when plants are burned in a fire. The amount of carbon in the atmosphere can be changed by increasing or decreasing rates of photosynthesis, use of fossil fuels, and number of fires. [Pg.187]

The Table of Contents for this collection will facilitate this discussion. Notice that the papers are grouped into the categories of Atmospheric, Aquatic and Terrestrial Components, Global Carbon Cycle and Climate Change, and Global Environmental Science Education. The reader may want to consider the various chemical species studied in each paper. Next, the reader may wish to group the papers by whether they address the source or the receptor, the transport or transformation processes for the chemical species. Finally, the reader needs to establish the time scales and the spatial resolution used. [Pg.16]

Feedbacks may be affected directly by atmospheric CO2, as in the case of possible CO2 fertilization of terrestrial production, or indirectly through the effects of atmospheric CO2 on climate. Furthermore, feedbacks between the carbon cycle and other anthropogenically altered biogeochemical cycles (e.g., nitrogen, phosphorus, and sulfur) may affect atmospheric CO2. If the creation or alteration of feedbacks have strong effects on the magnitudes of carbon cycle fluxes, then projections, made without consideration of these feedbacks and their potential for changing carbon cycle processes, will produce incorrect estimates of future concentrations of atmospheric CO2. [Pg.393]

Figure 1. Changes in global climate due to increased atmospheric CO2 will alter carbon cycle processes in land, continent margins, and oceans, which will in turn effect the atmospheric C02concentration. Processes that may have effects large enough to Eilter future projections of atmospheric CO2 are listed under their geographic region. Figure 1. Changes in global climate due to increased atmospheric CO2 will alter carbon cycle processes in land, continent margins, and oceans, which will in turn effect the atmospheric C02concentration. Processes that may have effects large enough to Eilter future projections of atmospheric CO2 are listed under their geographic region.
Olson, J. S. In The Carbon Cycle and Atmospheric CO2 Natural Variations Archean to Present Sundquist, E. T. Broecker, W. S., Eds. Geophysical Monograph 32 American Geophysical Union Washington DC, 1985 pp. 377-396. [Pg.412]

Figure 1. The global carbon cycle. Estimates of reservoir size and annual fluxes are from Post et al. (4), Vegetation carbon reservoir was estimated from latest carbon density estimates. All values except the atmospheric reservoir are approximate only. All values are in gigatons. Fluxes are next to the arrows and are in gigatons ear. Figure 1. The global carbon cycle. Estimates of reservoir size and annual fluxes are from Post et al. (4), Vegetation carbon reservoir was estimated from latest carbon density estimates. All values except the atmospheric reservoir are approximate only. All values are in gigatons. Fluxes are next to the arrows and are in gigatons ear.
Dead vegetation also afreets the global carbon cycle. Dead organic matter decomposes, releasing carbon dioxide to the atmosphere. Rates of decomposition vary with material, location, and climate. Non-woody organic matter decomposes rapidly woody organic matter slowly. Decomposition tends to occur faster at the soil surface than below. Decomposition is relatively fast in warm moist climates. In cold climates and in wetlands, decomposition is so slow that there is a net increase of stored carbon in the soil and organic soils called, "histosols, are formed. [Pg.416]

The most common way in which the global carbon budget is calculated and analyzed is through simple diagrammatical or mathematical models. Diagrammatical models usually indicate sizes of reservoirs and fluxes (Figure 1). Most mathematical models use computers to simulate carbon flux between terrestrial ecosystems and the atmosphere, and between oceans and the atmosphere. Existing carbon cycle models are simple, in part, because few parameters can be estimated reliably. [Pg.417]

Several studies, based on models, examined the effects of land-use change on the global carbon cycle and conclude that there is a net release of carbon due to land clearing. However, the results and conclusions of these studies are based on assumed sizes of vegetation carbon pools which are inputs to the models. For example, Melillo et al. 24) concluded that boreal and temperate deciduous forests of the northern hemisphere are net sources of atmospheric carbon. Their analysis used values for carbon density derived by Whittaker and Likens 19) from work by Rodin and Bazilevich (27). Rodin and Bazilevich extrapolated results of small, unrelated studies in Europe and the USSR to estimate total biomass of Eurasian boreal and temperate deciduous forests. Their estimates have since been extrapolated to forests worldwide and are used often today. [Pg.419]

Bjorkstrom, A. 1979. A model of CO2 interaction between atmosphere,oceans, and land biota. In The Global Carbon Cycle, Bolin, B. Degens, E. T. Kempe, S. Ketner, P., Eds. SCOPE 13 J Wiley Sons New York, NY, 1979 pp 403-457. [Pg.424]

Budgets and cycles can be considered on very different spatial scales. In this book we concentrate on global, hemispheric and regional scales. The choice of a suitable scale (i.e. the size of the reservoirs), is determined by the goals of the analysis as well as by the homogeneity of the spatial distribution. For example, in carbon cycle models it is reasonable to consider the atmosphere as one reservoir (the concentration of CO2 in the atmosphere is fairly uniform). On the other hand, oceanic carbon content and carbon exchange processes exhibit large spatial variations and it is reasonable to separate the... [Pg.10]

An important example of non-linearity in a biogeochemical cycle is the exchange of carbon dioxide between the ocean surface water and the atmosphere and between the atmosphere and the terrestrial system. To illustrate some effects of these non-linearities, let us consider the simplified model of the carbon cycle shown in Fig. 4-12. Ms represents the sum of all forms of dissolved carbon (CO2, H2CO3, HCOi" and... [Pg.72]

Rainwater and snowmelt water are primary factors determining the very nature of the terrestrial carbon cycle, with photosynthesis acting as the primary exchange mechanism from the atmosphere. Bicarbonate is the most prevalent ion in natural surface waters (rivers and lakes), which are extremely important in the carbon cycle, accoxmting for 90% of the carbon flux between the land surface and oceans (Holmen, Chapter 11). In addition, bicarbonate is a major component of soil water and a contributor to its natural acid-base balance. The carbonate equilibrium controls the pH of most natural waters, and high concentrations of bicarbonate provide a pH buffer in many systems. Other acid-base reactions (discussed in Chapter 16), particularly in the atmosphere, also influence pH (in both natural and polluted systems) but are generally less important than the carbonate system on a global basis. [Pg.127]

Baes, C. F., Bjdrkstrom, A. and MuIhoUand, P. J. (1985). Uptake of carbon dioxide by the oceans. In "Atmospheric Carbon Dioxide and the Global Carbon Cycle" (J. R. Trabalka, ed.). Report DOE/ ER-0239, US Department of Energy, Office of Energy Research, Washington, DC. [Pg.273]

The significance of the carbon cycle has relatively recently become appreciated by scientists and non-scientists alike, due to the buildup of carbon dioxide in the atmosphere. Out of all of the cycles we present here, it is perhaps the easiest one to use as an example of how... [Pg.279]


See other pages where Carbon cycle atmospheric is mentioned: [Pg.60]    [Pg.34]    [Pg.263]    [Pg.60]    [Pg.34]    [Pg.263]    [Pg.13]    [Pg.18]    [Pg.28]    [Pg.31]    [Pg.102]    [Pg.100]    [Pg.571]    [Pg.144]    [Pg.241]    [Pg.63]    [Pg.18]    [Pg.339]    [Pg.392]    [Pg.393]    [Pg.397]    [Pg.398]    [Pg.407]    [Pg.408]    [Pg.412]    [Pg.412]    [Pg.413]    [Pg.416]    [Pg.416]    [Pg.417]    [Pg.419]    [Pg.423]    [Pg.463]    [Pg.272]   
See also in sourсe #XX -- [ Pg.2 , Pg.240 , Pg.260 , Pg.261 ]




SEARCH



Atmosphere carbon

Atmosphere cycle

Carbon atmospheric

Carbon cycle

Carbon cycle ocean/atmosphere

Carbon cycles, global atmosphere

Carbon cycling

Cycling atmospheric

The atmospheric carbon cycle

© 2024 chempedia.info