Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon black acidity

PEG 300 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy) phenol Screener titanium dioxide zinc oxide carbon black Acid scavenger hydrotalcite Fiber carbon nanotube HAS 1,3,5-triazine-2,4,6-triamine, N,N [1,2-eth-ane-diyl-bis[[[4,6-bis[butyl(1,2,6,6-pentamethyl-4-piperidinyl) amino]-1,3,5-triazine-2-yl]imino]-3,1 -propanediyl]bis[N ,N -dibutyl-N ,N -bis(1,2,2,6,6-pentamethyl-4-piperidinyl)- bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate + methyl-1,2,2,6,6-pentamethyl-4-piperidyl sebacate 2,2,6,6-tetrameth-yl-4-piperidinyl stearate reaction products of N,N -ethane-1,2-diylbis(1,3-propanediamine), cyclohexane, peroxidized... [Pg.352]

Hypalon 40 N774 Carbon black Acid acceptors and activators Magnesia (high activity)... [Pg.323]

These effects can be illustrated more quantitatively. The drop in the magnitude of the potential of mica with increasing salt is illustrated in Fig. V-7 here yp is reduced in the immobile layer by ion adsorption and specific ion effects are evident. In Fig. V-8, the pH is potential determining and alters the electrophoretic mobility. Carbon blacks are industrially important materials having various acid-base surface impurities depending on their source and heat treatment. [Pg.190]

Many solids have foreign atoms or molecular groupings on their surfaces that are so tightly held that they do not really enter into adsorption-desorption equilibrium and so can be regarded as part of the surface structure. The partial surface oxidation of carbon blacks has been mentioned as having an important influence on their adsorptive behavior (Section X-3A) depending on conditions, the oxidized surface may be acidic or basic (see Ref. 61), and the surface pattern of the carbon rings may be affected [62]. As one other example, the chemical nature of the acidic sites of silica-alumina catalysts has been a subject of much discussion. The main question has been whether the sites represented Brpnsted (proton donor) or Lewis (electron-acceptor) acids. Hall... [Pg.581]

Approximately 50—55% of the product from a coal-tar refinery is pitch and another 30% is creosote. The remaining 15—20% is the chemical oil, about half of which is naphthalene. Creosote is used as a feedstock for production of carbon black and as a wood preservative. Because of modifications to modem coking processes, tar acids such as phenol and cresyUc acids are contained in coal tar in lower quantity than in the past. To achieve economies of scale, these tar acids are removed from cmde coal tar with a caustic wash and sent to a central processing plant where materials from a number of refiners are combined for recovery. [Pg.162]

Acid-Base Behavior. The relative acidity-basicity of the filler, generally determined by measuring the pH value of a slurry of a specific mass of filler in 100 mL of deionized water, can influence the behavior of a filler in some systems. For example, the curing behavior of some elastomers is sensitive to the pH value of carbon black. [Pg.367]

Fillers. Materials used as fillers (qv) in mbber can also be classified as acidic, basic, or neutral. Furnace blacks, ie, HAF, FEF, or SRF, are somewhat basic. As such, they can have an activating effect on sulfur cure rates. Furthermore, carbon blacks have been found to promote formation of mono/disulfide cross-links thereby helping minimize reversion and enhance aging properties. [Pg.242]

Substitution of some of the alkoxy groups on the polytitanoxanes with glycols, P-diketones or P-ketoesters, fatty acids, diester phosphates or pyrophosphates, and sulfonic acids gives a group of products that are very effective surface-treating agents for carbon black, graphite, or fibers (32). [Pg.142]

Adsorption. Many studies have been made of the adsorption of soaps and synthetic surfactants on fibers in an attempt to relate detergency behavior to adsorption effects. Relatively fewer studies have been made of the adsorption of surfactants by soils (57). Plots of the adsorption of sodium soaps by a series of carbon blacks and charcoals show that the fatty acid and the alkaU are adsorbed independently, within limits, although the presence of excess aLkaU reduces the sorption of total fatty acids (58). No straightforward relationship was noted between detergency and adsorption. [Pg.532]

These problems can be dealt with by usiag artificial test cloths impregnated with various approximations of natural soils such as vacuum cleaner dust, dirt from air conditioner filters, clays, carbon black, fatty acids, dirty motor oil, and artificial sebum, either alone or ia combination (37,94—98). The soils are appHed by sprayiag, immersion, or padding. If the soils are carefully appHed, reproducible results can be obtained. Soil test cloths can be of great help ia detergency studies, when used with an understanding of their limitations. [Pg.536]

Compound parts polymer, 100 Naugard 445 (substituted diphenyl amine), 2 Armeen 18D (octadecyl amine), 0.5 stearic acid, 2 Vanfre VAM (complex organic alkyl acid), 0.5 SRE Carbon Black (N774), 100 DIAK 1 (hexamethylenediamine), 1.25 and di-o-tolylguanidine, 4. [Pg.499]

Typical applications in the chemical field (Beaver, op. cit.) include detarring of manufactured gas, removal of acid mist and impurities in contact sulfuric acid plants, recovery of phosphoric acid mists, removal of dusts in gases from roasters, sintering machines, calciners, cement and lime Idlns, blast furnaces, carbon-black furnaces, regenerators on fluid-catalyst units, chemical-recoveiy furnaces in soda and sulfate pulp mills, and gypsum kettles. Figure 17-74 shows a vertical-flow steel-plate-type precipitator similar to a type used for catalyst-dust collection in certain fluid-catalyst plants. [Pg.1616]

Phosphoric Acid Fuel Cell This type of fuel cell was developed in response to the industiy s desire to expand the natural-gas market. The electrolyte is 93 to 98 percent phosphoric acid contained in a matrix of silicon carbide. The electrodes consist of finely divided platinum or platinum alloys supported on carbon black and bonded with PTFE latex. The latter provides enough hydrophobicity to the electrodes to prevent flooding of the structure by the electrolyte. The carbon support of the air elec trode is specially formulated for oxidation resistance at 473 K (392°F) in air and positive potentials. [Pg.2412]

Amongst heat stabilisers are copper salts, phosphoric acid esters,phenyl-3-naphthylamine, mercaptobenzothiazole and mercaptobenzimidazole. Of these, copper salts in conjunction with halides have been found particularly effective, and some automotive specifications require the use of copper for heat stabilisation. Light stabilisers include carbon black and various phenolic materials. [Pg.497]

Tsai et al. have also used RAIR to investigate reactions occurring between rubber compounds and plasma polymerized acetylene primers deposited onto steel substrates [12J. Because of the complexities involved in using actual rubber formulations, RAIR was used to examine primed steel substrates after reaction with a model rubber compound consisting of squalene (100 parts per hundred or phr), zinc oxide (10 phr), carbon black (10 phr), sulfur (5 phr), stearic acid (2 phr). [Pg.255]

All of the eommereial alkyl eyanoaerylate monomers are low-viseosity liquids, and for some applications this can be an advantage. However, there are instances where a viseous liquid or a gel adhesive would be preferred, sueh as for application to a vertical surface or on porous substrates. A variety of viscosity control agents, depending upon the desired properties, have been added to increase the viscosity of instant adhesives [21]. The materials, which have been utilized, include polymethyl methacrylate, hydrophobic silica, hydrophobic alumina, treated quartz, polyethyl cyanoacrylate, cellulose esters, polycarbonates, and carbon black. For example, the addition of 5-10% of amorphous, non-crystalline, fumed silica to ethyl cyanoacrylate changes the monomer viscosity from a 2-cps liquid to a gelled material [22]. Because of the sensitivity of cyanoacrylate esters to basic materials, some additives require treatment with an acid to prevent premature gelation of the product. [Pg.856]


See other pages where Carbon black acidity is mentioned: [Pg.109]    [Pg.161]    [Pg.182]    [Pg.188]    [Pg.109]    [Pg.161]    [Pg.182]    [Pg.188]    [Pg.283]    [Pg.347]    [Pg.1008]    [Pg.401]    [Pg.411]    [Pg.369]    [Pg.579]    [Pg.70]    [Pg.512]    [Pg.380]    [Pg.5]    [Pg.305]    [Pg.234]    [Pg.256]    [Pg.312]    [Pg.13]    [Pg.270]    [Pg.291]    [Pg.296]    [Pg.543]    [Pg.398]    [Pg.458]    [Pg.503]    [Pg.526]    [Pg.534]    [Pg.979]    [Pg.1441]    [Pg.254]    [Pg.411]   
See also in sourсe #XX -- [ Pg.239 ]




SEARCH



Acid black

© 2024 chempedia.info