Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbohydrate metabolism acid cycle

The starting compounds for the biosynthesis of vanillic acid in genetically modified Escherichia coli are erythrose 4-phosphate and phosphoenol pyruvate. The erythrose is an intermediate product in carbohydrate metabolism (Calvin cycle, dark reaction of photosynthesis). [154, 155] Phosphoenol pyruvate is produced in several steps from 3-phosphoglyceric acid, or from a technical point of view, from succinic acid via the citric acid cycle. [156]... [Pg.117]

Physiological Role of Citric Acid. Citric acid occurs ia the terminal oxidative metabolic system of virtually all organisms. This oxidative metabohc system (Fig. 2), variously called the Krebs cycle (for its discoverer, H. A. Krebs), the tricarboxyUc acid cycle, or the citric acid cycle, is a metaboHc cycle involving the conversion of carbohydrates, fats, or proteins to carbon dioxide and water. This cycle releases energy necessary for an organism s growth, movement, luminescence, chemosynthesis, and reproduction. The cycle also provides the carbon-containing materials from which cells synthesize amino acids and fats. Many yeasts, molds, and bacteria conduct the citric acid cycle, and can be selected for thek abiUty to maximize citric acid production in the process. This is the basis for the efficient commercial fermentation processes used today to produce citric acid. [Pg.182]

Glutfflnic acid is fonned in most organisms from ammonia and a-ketoglutaric acid. a-Ketoglutaric acid is one of the intennediates in the tricarboxylic acid cycle (also called the Krebs cycle) and arises via metabolic breakdown of food sources carbohydrates, fats, and proteins. [Pg.1123]

The 4-phosphopantetheine group of CoA is also utilized (for essentially the same purposes) in acyl carrier proteins (ACPs) involved in fatty acid biosynthesis (see Chapter 25). In acyl carrier proteins, the 4-phosphopantetheine is covalently linked to a serine hydroxyl group. Pantothenic acid is an essential factor for the metabolism of fat, protein, and carbohydrates in the tricarboxylic acid cycle and other pathways. In view of its universal importance in metabolism, it is surprising that pantothenic acid deficiencies are not a more serious problem in humans, but this vitamin is abundant in almost all foods, so that deficiencies are rarely observed. [Pg.593]

Nearly all products of digestion of carbohydrate, fat, and protein are metabolized to a common metabolite, acetyl-CoA, before final oxidation to CO2 in the citric acid cycle. [Pg.129]

The citric acid cycle is the final common pathway for the aerobic oxidation of carbohydrate, lipid, and protein because glucose, fatty acids, and most amino acids are metabolized to acetyl-CoA or intermediates of the cycle. It also has a central role in gluconeogenesis, lipogenesis, and interconversion of amino acids. Many of these processes occur in most tissues, but the hver is the only tissue in which all occur to a significant extent. The repercussions are therefore profound when, for example, large numbers of hepatic cells are damaged as in acute hepatitis or replaced by connective tissue (as in cirrhosis). Very few, if any, genetic abnormalities of citric acid cycle enzymes have been reported such ab-normahties would be incompatible with life or normal development. [Pg.130]

Rice bran is the richest natural source of B-complex vitamins. Considerable amounts of thiamin (Bl), riboflavin (B2), niacin (B3), pantothenic acid (B5) and pyridoxin (B6) are available in rice bran (Table 17.1). Thiamin (Bl) is central to carbohydrate metabolism and kreb s cycle function. Niacin (B3) also plays a key role in carbohydrate metabolism for the synthesis of GTF (Glucose Tolerance Factor). As a pre-cursor to NAD (nicotinamide adenine dinucleotide-oxidized form), it is an important metabolite concerned with intracellular energy production. It prevents the depletion of NAD in the pancreatic beta cells. It also promotes healthy cholesterol levels not only by decreasing LDL-C but also by improving HDL-C. It is the safest nutritional approach to normalizing cholesterol levels. Pyridoxine (B6) helps to regulate blood glucose levels, prevents peripheral neuropathy in diabetics and improves the immune function. [Pg.357]

Plant metabolism can be separated into primary pathways that are found in all cells and deal with manipulating a uniform group of basic compounds, and secondary pathways that occur in specialized cells and produce a wide variety of unique compounds. The primary pathways deal with the metabolism of carbohydrates, lipids, proteins, and nucleic acids and act through the many-step reactions of glycolysis, the tricarboxylic acid cycle, the pentose phosphate shunt, and lipid, protein, and nucleic acid biosynthesis. In contrast, the secondary metabolites (e.g., terpenes, alkaloids, phenylpropanoids, lignin, flavonoids, coumarins, and related compounds) are produced by the shikimic, malonic, and mevalonic acid pathways, and the methylerythritol phosphate pathway (Fig. 3.1). This chapter concentrates on the synthesis and metabolism of phenolic compounds and on how the activities of these pathways and the compounds produced affect product quality. [Pg.89]

We will now draw attention to the Krebs cycle otherwise called the tricarboxylic acid cycle (fig. 17). It is now known that carbohydrate metabolism and fatty acid metabolism as well as acetate proceed via changes indicated in the cycle. The essential... [Pg.154]

The calorific capacity of amino acids is comparable to that of carbohydrates so despite their prime importance in maintaining structural integrity of cells as proteins, amino acids may be used as fuels especially during times when carbohydrate metabolism is compromised, for example, starvation or prolonged vigorous exercise. Muscle and liver are particularly important in the metabolism of amino acids as both have transaminase enzymes (see Figures 6.2 and 6.3 and Section 6.4.2) which convert the carbon skeletons of several different amino acids into intermediates of glycolysis (e.g. pyruvate) or the TCA cycle (e.g. oxaloacetate). Not all amino acids are catabolized to the same extent... [Pg.254]

O Ketoacidosis is a dangerous condition that is characterized by the acidification of the blood and an acetone odour on the breath. The condition occurs when levels of oxaloacetic acid for the citric acid cycle are low. This leads to a buildup of acetyl CoA molecules, which the liver metabolizes to produce acidic ketone bodies. Since carbohydrates are the main source of oxaloacetic acid in the body, high-protein, low-carbohydrate diets have been linked to ketoacidosis. [Pg.566]

Thiamine pyrophosphate is a coenzyme for several enzymes involved in carbohydrate metabolism. These enzymes either catalyze the decarboxylation of oi-keto acids or the rearrangement of the carbon skeletons of certain sugars. A particularly important example is provided by the conversion of pyruvic acid, an oi-keto acid, to acetic acid. The pyruvate dehydrogenase complex catalyzes this reaction. This is the key reaction that links the degradation of sugars to the citric acid cycle and fatty acid synthesis (chapters 16 and 18) ... [Pg.200]

The citric acid cycle is at the heart of aerobic cellular metabolism, or respiration. This is true of both prokaryotic and eukaryotic organisms, of plants and animals, of organisms large and small. Here is the main point. On the one hand, the small molecule products of catabolism of carbohydrates, lipids, and amino acids feed into the citric acid cycle. There they are converted to the ultimate end products of catabolism, carbon dioxide and water. On the other hand, the molecules of the citric acid cycle are intermediates for carbohydrate, lipid, and amino acid synthesis. Thus, the citric acid cycle is said to be amphibolic, involved in both catabolism and anabolism. It is a sink for the products of degradation of carbohydrates, lipids, and proteins and a source of building blocks for them as well. [Pg.230]

Citric acid has three prochiral centres The Krebs cycle is a process involved in the metabolic degradation of carbohydrate (see Section 15.3). It is also called the ciU ic acid cycle, because citric acid was one of the first intermediates identified. Once formed, citric acid is modified by the enzyme aconitase through the intermediate... [Pg.95]

The enzyme isocitrate dehydrogenase is one of the enzymes of the Krebs or citric acid cycle, a major feature in carbohydrate metabolism (see Section 15.3). This enzyme has two functions, the major one being the dehydrogenation (oxidation) of the secondary alcohol group in isocitric acid to a ketone, forming oxalosuccinic acid. This requires the cofactor NAD+ (see Section 11.2). For convenience, we are showing non-ionized acids here, e.g. isocitric acid, rather than anions, e.g. isocitrate. [Pg.389]

The proteinogenic amino acids (see p. 60) can be divided into five families in relation to their biosynthesis. The members of each family are derived from common precursors, which are all produced in the tricarboxylic acid cycle or in catabolic carbohydrate metabolism. An overview of the biosynthetic pathways is shown here further details are given on pp. 412 and 413. [Pg.184]

Another evolving subdiscipline is interaction proteomics. Protein-protein interactions are a key element of almost all cellular processes. These interactions underlie the events of cell-cycle regulation, cellular architecture, intracellular signal transduction, nucleic acid metabolism, lipid metabolism, and carbohydrate metabolism. A rigorous... [Pg.126]

As well as these effects, salicylate also affects Krebs cycle, carbohydrate metabolism, lipid metabolism, and protein and amino acid metabolism. [Pg.356]

The citric acid cycle (Krebs cycle, TCA cycle) is a nearly universal central catabolic pathway in which compounds derived from the breakdown of carbohydrates, fats, and proteins are oxidized to C02, with most of the energy of oxidation temporarily held in the electron carriers FADH2 and NADH. During aerobic metabolism, these electrons are transferred to 02 and the energy of electron flow is trapped as ATP. [Pg.620]

The same intermediates of glycolysis and the citric acid cycle that activate isocitrate dehydrogenase are allosteric inhibitors of isocitrate lyase. When energy-yielding metabolism is sufficiently fast to keep the concentrations of glycolytic and citric acid cycle intermediates low, isocitrate dehydrogenase is inactivated, the inhibition of isocitrate lyase is relieved, and isocitrate flows into the glyoxylate pathway, to be used in the biosynthesis of carbohydrates, amino acids, and other cellular components. [Pg.625]

Carbohydrate metabolism in a typical plant cell is more complex in several ways than that in a typical animal cell. The plant cell carries out the same processes that generate energy in animal cells (glycolysis, citric acid cycle, and oxidative phosphorylation) it can generate hexoses from three- or four-carbon compounds by glu-coneogenesis it can oxidize hexose phosphates to pentose phosphates with the generation of NADPH (the ox-... [Pg.780]

Glucose 6-phosphate is the key intermediate in carbohydrate metabolism. It may be polymerized into glycogen, dephosphorylated to blood glucose, or converted to fatty acids via acetyl-CoA. It may undergo oxidation by glycolysis, the citric acid cycle, and respiratory chain to yield ATP, or enter the pentose phosphate pathway to yield pentoses and NADPH. [Pg.902]

UNIT II Intermediary Metabolism Chapter 6 Bioenergetics and Oxidative Phosphorylation 69 Chapter 7 Introduction to Carbohydrates 83 Chapter 8 Glycolysis 89 Chapter 9 Tricarboxylic Acid Cycle 107 Chapter 10 Gluconeogenesis 115 Chapter 11 Glycogen Metabolism 123... [Pg.509]

To replace losses, oxaloacetate can be synthesized from pyruvate and C02 in a reaction that uses ATP as an energy source. This is indicated by the heavy gray line leading downward to the right from pyruvate in Fig. 10-1 and at the top center of Fig. 10-6. This reaction depends upon yet another coenzyme, a bound form of the vitamin biotin. Pyruvate is formed from breakdown of carbohydrates such as glucose, and the need for oxaloacetate in the citric acid cycle makes the oxidation of fats in the human body dependent on the concurrent metabolism of carbohydrates. [Pg.515]

The oxidative cleavage of an a-oxoacid is a major step in the metabolism of carbohydrates and of amino acids and is also a step in the citric acid cycle. In many bacteria and in eukaryotes the process depends upon both thiamin diphosphate and lipoic acid. The oxoacid anion is cleaved to form C02 and the remaining acyl group is combined with coenzyme A (Eq. 15-33). [Pg.796]

To complete the oxidation of fatty acids the acetyl units of acetyl-CoA generated in the P oxidation sequence must be oxidized to carbon dioxide and water.77 The citric acid (or tricarboxylic acid) cycle by which this oxidation is accomplished is a vital part of the metabolism of almost all aerobic creatures. It occupies a central position in metabolism because of the fact that acetyl-CoA is also an intermediate in the catabolism of carbohydrates and of many amino acids and other compounds. The cycle is depicted in detail in Fig. 10-6 and in an abbreviated form, but with more context, in Fig. 17-4. [Pg.950]


See other pages where Carbohydrate metabolism acid cycle is mentioned: [Pg.101]    [Pg.305]    [Pg.2145]    [Pg.194]    [Pg.136]    [Pg.157]    [Pg.157]    [Pg.18]    [Pg.310]    [Pg.92]    [Pg.110]    [Pg.230]    [Pg.231]    [Pg.112]    [Pg.134]    [Pg.195]    [Pg.751]    [Pg.806]    [Pg.897]    [Pg.94]    [Pg.107]    [Pg.973]   


SEARCH



Acidity, carbohydrate

Carbohydrates acids

Carbohydrates metabolism

© 2024 chempedia.info