Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow adsorption calorimetry

An alternative method is flow adsorption microcalorimetry, which involves the use of a carrier gas passing continuously through the adsorption cell. The catalyst is placed on a glass frit in a gas circulation cell in the calorimeter. In order to determine the amounts of gas adsorbed, flow calorimetry must be used in combination with another technique, most frequently TG, MS or GC [8, 18]. [Pg.399]

Groszek, AJ. and Aharoni, C. (1999). Study of the active carbon-water interaction by flow adsorption calorimetry. Langmuir, 15, 5956-60. [Pg.184]

Flow adsorption calorimetry is recognized as an important method to study adsorption/desorption phenomena at solid-fluid interfaces. According to a review by Groszek [37], flow adsorption microcalorimetiy is now developed to a point where it provides accurate and reliable adsorption and desorption data for events occurring at the solid-liquid or gas-solid interface over a wide range of temperatures, pressures and solution concentrations. [Pg.62]

When coupled to gas adsorption data, calorimetric data can be very useful for the textural characterization of carbons. The use of chemical probes with different molecular sizes allow determining the pore size distribution [288-295]. On the other hand, relevant information concerning chemical properties of the carbon surfaces and their influence on the sorption properties of carbons can be obtained when using the appropriate calorimetric technique. Immersion, flow adsorption and gas-adsorption calorimetry have been employed for the study of surface chemistry of carbons. For instance, immersion calorimetry provides a direct measurement of the energy involved in the interaction of vapor molecules of the immersion liquid with the surface of the solid. This energy depends on the chemical nature of the solid surfajoe and the probe molecules, i.e. the specific interaction between the solid and the liquid. Comparison between enthalpies of immersion into liquids with different polarities provides a picture of the surface chemistry of the solid. Although calorimetric techniques are not able to completely characterize the complex surface chemistry of carbons, they represent a valuable complement to other techniques. [Pg.205]

An extensive study of the acidity and basicity of minerals by flow adsorption calorimetry over the past decade has been carried out by F. Fowkes and his group [25, 29]. His conclusion was that flow adsorption microcalorimetry was the only method that can correctly evaluate the distribution and strength of acid and base sites in solids, and predict the effect of these parameters on their catalytic and adhesive properties. This was fully supported by later work done by D. P. Ashton and D. Briggs [30]. [Pg.165]

As an illustration, let us mention a study by Brown et al. [31], who investigated by flow adsorption calorimetry the relative accessibilities of acid sites in zeolite Y and Kio clay catalysts in both acid and Na" " forms, reaching the conclusion that, under flow conditions and nitrogen at atmospheric pressure as carrier gas, the sites first covered by ammonia are not necessarily those with the highest heats of adsorption. [Pg.54]

A survey of the literature shows that although very different calorimeters or microcalorimeters have been used for measuring heats of adsorption, most of them were of the adiabatic type, only a few were isothermal, and until recently (14, 15), none were typical heat-flow calorimeters. This results probably from the fact that heat-flow calorimetry was developed more recently than isothermal or adiabatic calorimetry (16, 17). We believe, however, from our experience, that heat-flow calorimeters present, for the measurement of heats of adsorption, qualities and advantages which are not met by other calorimeters. Without entering, at this point, upon a discussion of the respective merits of different adsorption calorimeters, let us indicate briefly that heat-flow calorimeters are particularly adapted to the investigation (1) of slow adsorption or reaction processes, (2) at moderate or high temperatures, and (3) on solids which present a poor thermal diffusivity. Heat-flow calorimetry appears thus to allow the study of adsorption or reaction processes which cannot be studied conveniently with the usual adiabatic or pseudoadiabatic, adsorption calorimeters. In this respect, heat-flow calorimetry should be considered, actually, as a new tool in adsorption and heterogeneous catalysis research. [Pg.193]

Finally, most previous calorimetric studies in this field have been devoted to adsorption processes only, and very seldom were these studies extended to the investigation of complete catalytic reactions. The work of Garner and his collaborators in Bristol (18) is a notable exception. Heat-flow calorimetry is particularly convenient for such studies (19). [Pg.193]

It is true, however, that many catalytic reactions cannot be studied conveniently, under given conditions, with usual adsorption calorimeters of the isoperibol type, either because the catalyst is a poor heat-conducting material or because the reaction rate is too low. The use of heat-flow calorimeters, as has been shown in the previous sections of this article, does not present such limitations, and for this reason, these calorimeters are particularly suitable not only for the study of adsorption processes but also for more complete investigations of reaction mechanisms at the surface of oxides or oxide-supported metals. The aim of this section is therefore to present a comprehensive picture of the possibilities and limitations of heat-flow calorimetry in heterogeneous catalysis. The use of Calvet microcalorimeters in the study of a particular system (the oxidation of carbon monoxide at the surface of divided nickel oxides) has moreover been reviewed in a recent article of this series (19). [Pg.238]

It must be acknowledged, however, that the determination of the number of the different surface species which are formed during an adsorption process is often more difficult by means of calorimetry than by spectroscopic techniques. This may be phrased differently by saying that the resolution of spectra is usually better than the resolution of thermograms. Progress in data correction and analysis should probably improve the calorimetric results in that respect. The complex interactions with surface cations, anions, and defects which occur when carbon monoxide contacts nickel oxide at room temperature are thus revealed by the modifications of the infrared spectrum of the sample (75) but not by the differential heats of the CO-adsorption (76). Any modification of the nickel-oxide surface which alters its defect structure produces, however, a change of its energy spectrum with respect to carbon monoxide that is more clearly shown by heat-flow calorimetry (77) than by IR spectroscopy. [Pg.241]

Heat-flow calorimetry may be used also to detect the surface modifications which occur very frequently when a freshly prepared catalyst contacts the reaction mixture. Reduction of titanium oxide at 450°C by carbon monoxide for 15 hr, for instance, enhances the catalytic activity of the solid for the oxidation of carbon monoxide at 450°C (84) and creates very active sites with respect to oxygen. The differential heats of adsorption of oxygen at 450°C on the surface of reduced titanium dioxide (anatase) have been measured with a high-temperature Calvet calorimeter (67). The results of two separate experiments on different samples are presented on Fig. 34 in order to show the reproducibility of the determination of differential heats and of the sample preparation. [Pg.257]

In the various sections of this article, it has been attempted to show that heat-flow calorimetry does not present some of the theoretical or practical limitations which restrain the use of other calorimetric techniques in adsorption or heterogeneous catalysis studies. Provided that some relatively simple calibration tests and preliminary experiments, which have been described, are carefully made, the heat evolved during fast or slow adsorptions or surface interactions may be measured with precision in heat-flow calorimeters which are, moreover, particularly suitable for investigating surface phenomena on solids with a poor heat conductivity, as most industrial catalysts indeed are. The excellent stability of the zero reading, the high sensitivity level, and the remarkable fidelity which characterize many heat-flow microcalorimeters, and especially the Calvet microcalorimeters, permit, in most cases, the correct determination of the Q-0 curve—the energy spectrum of the adsorbent surface with respect to... [Pg.259]

Moreover, the use of heat-flow calorimetry in heterogeneous catalysis research is not limited to the measurement of differential heats of adsorption. Surface interactions between adsorbed species or between gases and adsorbed species, similar to the interactions which either constitute some of the steps of the reaction mechanisms or produce, during the catalytic reaction, the inhibition of the catalyst, may also be studied by this experimental technique. The calorimetric results, compared to thermodynamic data in thermochemical cycles, yield, in the favorable cases, useful information concerning the most probable reaction mechanisms or the fraction of the energy spectrum of surface sites which is really active during the catalytic reaction. Some of the conclusions of these investigations may be controlled directly by the calorimetric studies of the catalytic reaction itself. [Pg.260]

Microcalorimetry has gained importance as one of the most reliable method for the study of gas-solid interactions due to the development of commercial instrumentation able to measure small heat quantities and also the adsorbed amounts. There are basically three types of calorimeters sensitive enough (i.e., microcalorimeters) to measure differential heats of adsorption of simple gas molecules on powdered solids isoperibol calorimeters [131,132], constant temperature calorimeters [133], and heat-flow calorimeters [134,135]. During the early days of adsorption calorimetry, the most widely used calorimeters were of the isoperibol type [136-138] and their use in heterogeneous catalysis has been discussed in [134]. Many of these calorimeters consist of an inner vessel that is imperfectly insulated from its surroundings, the latter usually maintained at a constant temperature. These calorimeters usually do not have high resolution or accuracy. [Pg.212]

An apparatus with high sensitivity is the heat-flow microcalorimeter originally developed by Calvet and Prat [139] based on the design of Tian [140]. Several Tian-Calvet type microcalorimeters have been designed [141-144]. In the Calvet microcalorimeter, heat flow is measured between the system and the heat block itself. The principles and theory of heat-flow microcalorimetry, the analysis of calorimetric data, as well as the merits and limitations of the various applications of adsorption calorimetry to the study of heterogeneous catalysis have been discussed in several reviews [61,118,134,135,141,145]. The Tian-Calvet type calorimeters are preferred because they have been shown to be reliable, can be used with a wide variety of solids, can follow both slow and fast processes, and can be operated over a reasonably broad temperature range [118,135]. The apparatus is composed by an experimental vessel, where the system is located, which is contained into a calorimetric block (Figure 13.3 [146]). [Pg.212]

FIGURE 13.5 Calorimetric and volumetric data obtained from adsorption calorimetry measurements Raw pressure and heat flow data obtained for each dose of probe molecule and Thermokinetic parameter (a), Volumetric isotherms (b), Calorimetric isotherms (c), Integral heats (d), Differential heats (e), Site Energy Distribution Spectrum (f). (From Damjanovic, Lj. and Auroux, A., Handbook of Thermal Analysis and Calorimetry, Further Advances, Techniques and Applications, Elsevier, Amsterdam, 387-438, 2007. With permission.)... [Pg.217]

The distribution of surface acidity strength has been studied by measuring the differential adsorption heat of ammonia. The differential scanning calorimetry (Setaram DSC 111) and the FTIR spectrophotometry (Nicolet 740) have been simultaneously used in order to measure the heat associated with the neutralization of the acidic sites and the amount of chemisorbed base, respectively. Once the sample is saturated at 250 °C and the total acidity measurement is obtained as the amount of base used in the titration, the measurement of the total acidity has been verified by desorption of the base at programmed temperature (TPD). A ramp of 5 °C/min between 250 °C and 500 °C has been followed, with a He flow of 20 cm3/min and using the FTIR spectrophotometry for the measurement of the desorption products. [Pg.568]

In some respects, adiabatic calorimetry provides information which is complementary to that provided by heat-flow calorimetry. The latter allows a study to be made of the full composition range at constant temperature, whereas the adiabatic calorimetry study is carried out over the prescribed range of temperature with a constant amount of adsorptive in the adsorption cell (of course, this does not mean that a constant amount is adsorbed). Adiabatic calorimetry allows direct measurements of the heat capacities of adsorbed films, although they are difficult to make accurately... [Pg.63]

Immersion calorimetry has much to offer for the characterization of powders and porous solids or for the study of adsorption phenomena. The technique can provide both fundamental and technologically useful information, but for both purposes it is essential to undertake carefully designed experiments. Thus, it is no longer acceptable to make ill-defined heat of immersion measurements. To obtain thermodynamically valid energy, or enthalpy, or immersion data, it is necessary to employ a sensitive microcalorimeter (preferably of the heat-flow isothermal type) and adopt a technique which involves the use of sealed glass sample bulbs and allows ample time (usually one day) for outgassing and the subsequent temperature equilibration. [Pg.446]

Adsorption calorimetry consists of the coupling of a heat flow calorimeter with a system able to monitor the adsorption of a probe molecule by determining the amount of probe gas that has reacted with the solid under study. It is probably the most direct method for describing in detail both the quantitative and energetic features of surface sites. The adsorption of a probe molecule is an exothermic phenomenon (AHj s < 0), while desorption processes are associated with endothermic peaks (AHdes > 0). Heats of reduction are generally associated with an... [Pg.393]

When the system is used in pulse mode, it allows the measurement of heats of adsorption of a gaseous reactant on a solid or interaction heats between a gaseous reactant and pre-adsorbed species. When used as a flow reactor, it allows the kinetic study of catalytic reactions as well as the study of the activation or the aging of the catalyst. This is also a suitable system to perform calorimetric temperature programmed reduction (TPR), temperature programmed oxidation (TPO) or temperature programmed desorption (TPD) experiments. In addition to calorimetry, temperature programmed desorption (TPD) of adsorbed probe molecules can in principle also be used to estimate heats of adsorption [19]. [Pg.399]

A comparison between pulsed flow and conventional pulsed static calorimetry techniques for characterizing surface acidity using base probe molecule adsorption has been performed by Brown and coworkers [20, 21]. In a flow experiment, both reversible and irreversible probe adsorption occurring for each dose can be measured, and the composition of the gas flow gas can be easily modified. The AHads versus coverage profiles obtained from the two techniques were found to be comparable. The results were interpreted in terms of the extent to which NH3 adsorption on the catalyst surface is under thermodynamic control in the two methods. [Pg.399]

The porous structure of active carbons can be characterized by various techniques adsorption of gases (Ni, Ar, Kr, CO ) [5.39] or vapors (benzene, water) [5,39] by static (volumetric or gravimetric) or dynamic methods [39] adsorption from liquid solutions of solutes with a limited solubility and of solutes that are completely miscible with the solvent in all proportions [39] gas chromatography [40] immersion calorimetry [3,41J flow microcalorimetry [42] temperature-programmed desorption [43] mercury porosimetry [36,41] transmission electron microscopy (TEM) [44] and scanning electron microscopy (SEM) [44] small-angle x-ray scattering (SAXS) [44] x-ray diffraction (XRD) [44]. [Pg.130]

In a study of selective adsorption of sulfur compounds and aromatic compounds in a hexadecane on commercial zeolites, NaY, USy, HY, and 13X by adsorption at 55 °C and flow calorimetry techniques at 30 °C, Ng et al. found that a linear correlation between the heat of adsorption and the amount of S adsorbed for NaY.162 Competitive adsorption using a mixture of anthracene, DBT, and quinoline indicates that NaY selectively adsorbs quinoline, while anthracene and DBT have similar affinity to NaY, indicating that NaY is difficult to adsorptively separate sulfur compounds from aromatic hydrocarbons with the same number of the aromatic rings. [Pg.261]

Ng, F.T.T., Rahman, A., Ohasi, T., Jiang, M. A study of the adsorption of thiophenic sulfur compounds using flow calorimetry. Applied Catalysis B-Environmental 2005, 56, 127. [Pg.307]

Besides steady state measurements, there is probably good reason to use flow micro calorimetry for the study of non-steady-state behavior in systems with immobilized bio catalysts. Here, the mathematical description is more complicated, requiring the solution of partial differential equations. Moreover, the heat response can evolve non-specific heats, like heat of adsorption/desorption or mixing phenomena. In spite of these complications, the possibility of the on-line monitoring of the enzyme reaction rate can provide a powerful tool for studying the dynamics of immobilized biocatalyst systems. [Pg.97]

Woodbury, G.W. and NoU, L.A. (1987). Heats of adsorption from flow calorimetry Relationships between heats measured by different methods. Colloids Suf, 28, 233-45. [Pg.299]

A hybrid QCM/calorimetry device, Masscal, has been developed recently [199]. This technique combines the mass measurement change upon gas adsorption with the accompanying isothermal heat flow that allows a molar binding enthalpy to be determined. Various thin film chemical and biochemical systems have been studied, such as the hydration isotherms and associated hydration enthalpies determined for the immobihzed enzyme lysozyme [200]. [Pg.417]


See other pages where Flow adsorption calorimetry is mentioned: [Pg.457]    [Pg.73]    [Pg.129]    [Pg.145]    [Pg.113]    [Pg.567]    [Pg.1916]    [Pg.240]    [Pg.257]    [Pg.260]    [Pg.197]    [Pg.168]    [Pg.424]    [Pg.430]    [Pg.265]    [Pg.172]    [Pg.185]    [Pg.595]    [Pg.807]    [Pg.595]   
See also in sourсe #XX -- [ Pg.145 , Pg.146 ]




SEARCH



Adsorption calorimetry

Flow calorimetry

© 2024 chempedia.info