Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium carbonate, impurities

In addition to the main acidulation reaction, other reactions also occur. Free calcium carbonate in the rock reacts with the acid to produce additional by-product calcium compounds and CO2 gas which causes foaming. Other mineral impurities, eg, Fe, Al, Mg, U, and organic matter, dissolve, the result being that the wet-process acid is highly impure. [Pg.225]

Cementstone is an impure (usually argillaceous) limestone, possessing the ideal balance of siUca, alumina, and calcium carbonate for Portiand cement (qv) manufacture. When calcined it produces a hydrauHc cementing material. [Pg.163]

The selection of boiler-water treatment is also dependent on the type of cooling water. When cooling water reaches the boiler, various compounds precipitate before others. For instance, seawater contains considerable magnesium chloride. When the magnesium precipitates as the hydroxide, hydrochloric acid remains. In some lake waters, calcium carbonate is a significant impurity. When it reaches the boiler, carbon dioxide is driven off in the... [Pg.362]

Natural ground calcium carbonate has been used for years as the primary constituent of putty. Since 1945, the processing of natural calcium carbonate has seen the introduction of beneficiation by flotation (qv) to remove impurities and the development of grinding processes to manufacture finer products. Precipitated calcium carbonate was first introduced in England in 1850 commercial production started in the United States in about 1913. [Pg.410]

Decomposition with Bases. Alkaline decomposition of poUucite can be carried out by roasting poUucite with either a calcium carbonate—calcium chloride mix at 800—900°C or a sodium carbonate—sodium chloride mix at 600—800°C foUowed by a water leach of the roasted mass, to give an impure cesium chloride solution that is separated from the gangue by filtration (22). The solution can then be converted to cesium alum [7784-17-OJ, CS2SO4 Al2(S0 2 24H20. Extraction of cesium from the poUucite is almost complete. Solvent extraction of cesium carbonate from the cesium chloride solution using a phenol in kerosene has also been developed (23). [Pg.375]

The calcium carbonate precipitate was removed by filtration, and the filtered solution was found to contain 1,436 g of fructose as determined by optical rotation. A small amount of calcium bicarbonate was present as an impurity in solution and was removed by the addition of oxalic acid solution until a test for both calcium and oxalic acid was negative. The insoluble calcium oxalate precipitate was removed by filtration. [Pg.704]

Over the past decades, advances have been made that reduce environmental impacts of coal burning in large plants. Some arc standard and others experimental. Limestone (mainly calcium carbonate) scrubber smokestacks react with the emitted sulfates from the combustion and contain the chemical products, thereby reducing the release of SO., into the atmosphere by a large factor (of ten or more). Pulverization of coal can also allow for the mechanical separation of some sulfur impurities, notably those in the form of pyrites, prior to combustion. Currently deployed—with more advanced versions in the development stage—are various t yies of fluidized bed reactors, which use coal fuel in a pulverized form, mixed with pulverized limestone or dolomite in a high temperature furnace. This technique reduces sulfate release considerably. There are... [Pg.253]

The effect of pH on the corrosion of zinc has already been mentioned (p. 4.170). In the range of pH values from 5 -5 to 12, zinc is quite stable, and since most natural waters come within this range little difficulty is encountered in respect of pH. The pH does, however, affect the scale-forming properties of hard water (see Section 2.3 for a discussion of the Langelier index). If the pH is below the value at which the water is in equilibrium with calcium carbonate, the calcium carbonate will tend to dissolve rather than form a scale. The same effect is produced in the presence of considerable amounts of carbon dioxide, which also favours the dissolution of calcium carbonate. In addition, it is important to note that small amounts of metallic impurities (particularly copper) in the water can cause quite severe corrosion, and as little as 0-05 p.p.m. of copper in a domestic water system can be a source of considerable trouble with galvanised tanks and pipes. [Pg.819]

The production of steel begins when iron ore is fed into a blast furnace (Fig. 16.39). The furnace, which is approximately 40 m high, is continuously replenished from the top with a mixture of ore, coke, and limestone. Each kilogram of iron produced requires about 1.75 kg of ore, 0.75 kg of coke, and 0.25 kg of limestone. The limestone, which is primarily calcium carbonate, undergoes thermal decomposition to calcium oxide (lime) and carbon dioxide. The calcium oxide, which contains the Lewis base O2", helps to remove the acidic (nonmetal oxide) and amphoteric impurities from the ore ... [Pg.809]

Out of three phases reported for Ca3N2 [12], to date only the cubic (a) nitride phase is confirmed, crystallizing in the anti-bixbyite type structure. In addition, the carbodiimide nitride Ca4(CN2)N2 [13] may hold for another unconfirmed calcium nitride phase, and Can(CN2)2N6 stands for the ill-defined CauNg [14]. Here we note again that carbon impurities may produce significant difficulties in reactions. [Pg.126]

Marble. The word marble is used as the common name for two types of monomineral rocks one derived from limestone and therefore composed of calcium carbonate, the other derived from dolomite and composed of calcium magnesium carbonate. Extremely high pressures and heat during past geological times modified the structure of both limestone and dolomite, compacting them into a characteristic crystal structure. Most marble is white however, minor and trace amounts of metallic impurities cause the formation of stains in a variety of colors, hues, and patterns, or of colored marble. [Pg.84]

The composition of the particles is related to that of the source rocks. Quartz sand [composed of silica (silicon dioxide)], which makes up the most common variety of silica sand, is derived from quartz rocks. Pure quartz is usually almost free of impurities and therefore almost colorless (white). The coloration of some silica sand is due to chemical impurities within the structure of the quartz. The common buff, brown, or gray, for example, is caused by small amounts of metallic oxides iron oxide makes the sand buff or brown, whereas manganese dioxide makes it gray. Other minerals that often also occur as sand are calcite, feldspar and obsidian Calcite (composed of calcium carbonate), is generally derived from weathered limestone or broken shells or coral feldspar is an igneous rock of complex composition, and obsidian is a natural glass derived from the lava erupting from volcanoes see Chapter 2. [Pg.136]

Limestone varieties differ greatly from one another in their texture and the impurities they contain, and consequently they also differ in color. The color of limestone may vary from white (when it contains practically no impurities) to off-white and even to intensely colored. Minor inclusions within the limestone structure are often of silica, usually in a concentration below 5%, as well as feldspar and clay in still lesser amounts. Many types of limestone also include embedded fossils. Much limestone deposits in the outer crust of the earth are altered during geologic metamorphic processes that involve mainly pressure and heat but also liquids and gases. Marble, for example, a metamorphic rock derived from calcium carbonate, is white when composed only of this substance colored metal ions and other impurities impart to marble a wide range of colors such as red, yellow, and green and also give... [Pg.166]

The basic constituent of seashells is calcium carbonate, an insoluble compound formed from calcium ions secreted from the cells of the shellfish and carbonate ions present in seawater. But calcium carbonate is a white solid. The colors of seashells often arise from impurities and metabolic waste products captured in the solid shell as it is formed. Coloration is dictated by both diet and water habitat. For example, some cowries that live and feed on soft corals take on the hue of the coral species. Yellow and red colors often arise from carotenoid pigments such as //-carotene. Light refraction often generates the iridescent mother-of-pearl hues. [Pg.51]

Boivan-Loiseau A process for purifying cane sugar. Calcium hydroxide is added to the syrup, and carbon dioxide passed through it. The precipitated calcium carbonate removes some of the coloring impurities. [Pg.43]

Calcium oxide is commercially obtained from limestone. The carbonate is roasted in a shaft or rotary khn at temperatures below 1,200°C untd aU CO2 is driven off. The compound is obtained as either technical, refractory or agricultural grade product. The commercial product usually contains 90 to 95% free CaO. The impurities are mostly calcium carbonate, magnesium carbonate, magnesium oxide, iron oxide and aluminum oxide. [Pg.171]

The hrst production step involves recovery of the metal from spodumene. The naturahy occurring ore, alpha-spodumene is heated in a brick-lined rotary kiln at a temperature between 1,075 to 1,100°C. This converts the alpha form to a more reactive form, beta-spodumene. The beta form is heated in a rotary kiln at 250°C with an excess of 93% sulfuric acid. The metal reacts with acid forming hthium sulfate. The kiln discharge is leached with water to separate water-soluble hthium sulfate from several impurity metals. Aqueous solution containing excess sulfuric acid is then neutrahzed by treatment with an excess of ground calcium carbonate (limestone). The solution is fdtered to... [Pg.487]

Calcium Carbonate (CaC03) Speleothem, Shell and Coral. - 3.1.1 Paramagnetic Impurities Field-swept ESE and Out-of-phase Measurements. Carbonate dissolution and the back reaction of its deposition are described as follows... [Pg.6]

Calcium hydroxide [1305-62-0] M 74.1. Heat analytical grade calcium carbonate at 1000° during Ih. Allow the resulting oxide to cool and add slowly to water. Heat the suspension to boiling, cool and filter through a sintered glass funnel of medium porosity (to remove soluble alkaline impurities). Dry the solid at 110° and crush to a uniformly fine powder. [Pg.374]


See other pages where Calcium carbonate, impurities is mentioned: [Pg.502]    [Pg.163]    [Pg.300]    [Pg.67]    [Pg.410]    [Pg.411]    [Pg.495]    [Pg.56]    [Pg.151]    [Pg.636]    [Pg.53]    [Pg.191]    [Pg.65]    [Pg.816]    [Pg.716]    [Pg.36]    [Pg.61]    [Pg.165]    [Pg.849]    [Pg.466]    [Pg.78]    [Pg.525]    [Pg.724]    [Pg.36]    [Pg.67]    [Pg.406]   


SEARCH



Calcium carbonate

Carbon impurity

Carbonate impurities

Impurities, carboneous

© 2024 chempedia.info