Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron sulfated metal oxides

An interesting variation on sulfated metal oxide type catalysts was presented by Sun et al. (198), who impregnated a dealuminated zeolite BEA with titanium and iron salts and subsequently sulfated the material. The samples exhibited a better time-on-stream behavior in the isobutane/1-butene alkylation (the reaction temperature was not given) than H-BEA and a mixture of sulfated zirconia and H-BEA. The product distribution was also better for the sulfated metal oxide-impregnated BEA samples. These results were explained by the higher concentration of strong Brpnsted acid sites of the composite materials than in H-BEA. [Pg.290]

Alkali metal haHdes can be volatile at incineration temperatures. Rapid quenching of volatile salts results in the formation of a submicrometer aerosol which must be removed or else exhaust stack opacity is likely to exceed allowed limits. Sulfates have low volatiHty and should end up in the ash. Alkaline earths also form basic oxides. Calcium is the most common and sulfates are formed ahead of haHdes. Calcium carbonate is not stable at incineration temperatures (see Calcium compounds). Transition metals are more likely to form an oxide ash. Iron (qv), for example, forms ferric oxide in preference to haHdes, sulfates, or carbonates. SiHca and alumina form complexes with the basic oxides, eg, alkaH metals, alkaline earths, and some transition-metal oxidation states, in the ash. [Pg.58]

In the direct precipitation process, the seeds of iron(III) oxide are added to an iron salt solution, most often iron(II) sulfate, which is subsequendy oxidized by air. The released sulfuric acid is removed by the addition of metallic iron with which it reacts to iron(II) sulfate. The overall reaction shows that ferrous sulfate is not consumed during the process. It only helps to oxidize metallic iron to ferric oxide ... [Pg.12]

The Sulfate Process. A flow diagram for the sulfate process is shown in Figure 1. The strongly exothermic digestion of the dried, milled feedstock in 85—95°/ sulfuric acid converts metal oxides into soluble sulfates, primarily titanium and iron. [Pg.124]

Reaction with amorphous silicon at 900°C, catalyzed by steam produces cadmium orthosilicate, Cd2Si04. The same product also is obtained by reaction with sdica. Finely divided oxide reacts with dimethyl sulfate forming cadmium sulfate. Cadmium oxide, upon rapid heating with oxides of many other metals, such as iron, molybdenum, tungsten, titanium, tantalum, niobium, antimony, and arsenic, forms mixed oxides. For example, rapid heating with ferric oxide at 750°C produces cadmium ferrite, CdFe204 ... [Pg.154]

Figure 6. An idealized scheme for a sedimentary porous medium with pore walls covered by a biofilm. High sulfate reduction rates are maintained even in depths to which sulfate cannot diffuse because of recycling of sulfate within the biofilm. Numbered points (in black circles) denote the following processes I, Respiration consumes oxygen. 2, Microbial reduction of reactive metal Oxides. Reduction of reactive ferric oxides is in equilibrium with reoxidation of ferrous iron by Os. Thus, no net loss of reactive iron takes place in these layers. 3, Microbial reduction of ferric oxides. 4, Sulfate reduction rate (denoted as SRR). 5, Sulfide oxidation, either microbiologically or chemically. 6, Sulfide builds up within the hiofilm, sulfate consumption increases, reactive iron pool decreases. 7, Formation of iron sulfides. Figure 6. An idealized scheme for a sedimentary porous medium with pore walls covered by a biofilm. High sulfate reduction rates are maintained even in depths to which sulfate cannot diffuse because of recycling of sulfate within the biofilm. Numbered points (in black circles) denote the following processes I, Respiration consumes oxygen. 2, Microbial reduction of reactive metal Oxides. Reduction of reactive ferric oxides is in equilibrium with reoxidation of ferrous iron by Os. Thus, no net loss of reactive iron takes place in these layers. 3, Microbial reduction of ferric oxides. 4, Sulfate reduction rate (denoted as SRR). 5, Sulfide oxidation, either microbiologically or chemically. 6, Sulfide builds up within the hiofilm, sulfate consumption increases, reactive iron pool decreases. 7, Formation of iron sulfides.
Benzylation of toluene with benzyl chloride, which is a typical example of Friedel-Crafts alkylation, is known to be catalyzed by Lewis-type superacids such as A1C13 and BF3. This type of catalyst has been mostly used for the Friedel-Crafts reaction, which is one of the most studied of organic reactions. This reaction was performed over several metal oxides and sulfates, and iron sulfates showed an unexpected effectiveness for the reaction (102-104). The catalytic activities of FeS04 and Fe2(S04)3 for the reaction were examined in detail the activities were remarkably dependent on calcination temperature, the maximum activity being observed with calcination at 700°C (105-107). Catalytic actions analogous to the above case were also observed with other Friedel-Crafts reactions, the benzoyl-ation of toluene with benzoyl chloride (108), the isopropylation of toluene with isopropyl halides (109), and the polycondensation of benzyl chloride UIO). [Pg.177]

Similarly, by adding metal oxide catalysts to the Ispra Mark 13 sulfnr-bromine cycle. General Atomics snlfnr-iodine cycle and sulfur-iron cycle (Reactions (56) to (64)), a number of new, modified metal sulfate based... [Pg.31]

Primary minerals formed in the ore deposit prior to weathering and erosion, including a wide variety of metal sulfides and sulfosalts, metal oxides, metal- and alkaline-earth carbonates, sulfates, crystalline silica, clays, and other silicates. Many metal sulfides (especially iron sulfides such as pyrite), when exposed by erosion or mining to atmospheric oxygen and water, can form acid-rock drainage (ARD). [Pg.4837]


See other pages where Iron sulfated metal oxides is mentioned: [Pg.421]    [Pg.2]    [Pg.948]    [Pg.1193]    [Pg.188]    [Pg.252]    [Pg.320]    [Pg.88]    [Pg.181]    [Pg.190]    [Pg.63]    [Pg.8]    [Pg.87]    [Pg.379]    [Pg.328]    [Pg.265]    [Pg.241]    [Pg.54]    [Pg.182]    [Pg.83]    [Pg.152]    [Pg.139]    [Pg.129]    [Pg.69]    [Pg.104]    [Pg.44]    [Pg.72]    [Pg.1081]    [Pg.1169]    [Pg.351]    [Pg.221]    [Pg.3064]    [Pg.3511]    [Pg.3512]    [Pg.4837]    [Pg.4838]   
See also in sourсe #XX -- [ Pg.669 ]




SEARCH



Iron metal

Iron sulfate

Metal iron oxides

Metal oxides, sulfated

Sulfate oxides

Sulfate-supported metal oxides iron oxide

Sulfated oxides

Sulfates iron oxide

Sulfates oxidation

© 2024 chempedia.info