Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron corrosion

Cl 13 Boron corrosion on reactor coolant pressure boundary (Germany, Japan, Ukraine, USA)... [Pg.6]

Present practice in German NPPs does not allow operation with leaks of the reactor coolant pressure boundary. Minor leaks may be detected early by walk-downs of the containment. To date, the number of such leaks has been very limited and no indications of boron corrosion on the reactor coolant pressure boundary have been found. [Pg.82]

Boron, in the form of boric acid, is used in the PWR primary system water to compensate for fuel consumption and to control reactor power (3). The concentration is varied over the fuel cycle. Small amounts of the isotope lithium-7 are added in the form of lithium hydroxide to increase pH and to reduce corrosion rates of primary system materials (4). Primary-side corrosion problems are much less than those encountered on the secondary side of the steam generators. [Pg.190]

The quantity of boric acid maintained in the reactor coolant is usually plant specific. In general, it ranges from ca 2000 ppm boron or less at the start of a fuel cycle to ca 0 ppm boron at the end. Most plants initially used 12-month fuel cycles, but have been extended to 18- and 24-month fuel cycles, exposing the materials of constmction of the fuel elements to longer operating times. Consequendy concern over corrosion problems has increased. [Pg.191]

The reactor coolant pH is controlled using lithium-7 hydroxide [72255-97-17, LiOH. Reactor coolant pH at 300°C, as a function of boric acid and lithium hydroxide concentrations, is shown in Figure 3 (4). A pure boric acid solution is only slightly more acidic than pure water, 5.6 at 300°C, because of the relatively low ionisation of boric acid at operating primary temperatures (see Boron COMPOUNDS). Thus the presence of lithium hydroxide, which has a much higher ionisation, increases the pH ca 1—2 units above that of pure water at operating temperatures. This leads to a reduction in corrosion rates of system materials (see Hydrogen-ION activity). [Pg.191]

Development of practical and low cost separators has been an active area of ceU development. CeU separators must be compatible with molten lithium, restricting the choice to ceramic materials. Early work employed boron nitride [10043-11-5] BN, but a more desirable separator has been developed using magnesium oxide [1309-48-4], MgO, or a composite ofMgO powder—BN fibers. Corrosion studies have shown that low carbon steel or... [Pg.585]

Approximately 5% of the U.S. consumption of is in agriculture. Boron is a necessary trace nutrient for plants and is added in small quantities to a number of fertilizers. Borates are also used in crop sprays for fast rehef of boron deficiency. Borates, when apphed at relatively high concentration, act as nonselective herbicides. Small quantities of borates are used in the manufacture of alloys and refractories (qv). Molten borates readily dissolve other metal oxides usage as a flux in metallurgy is an important apphcation. Other important small volume apphcations for borates are in fire retardants for both plastics and ceUulosic materials, in hydrocarbon fuels for fungus control, and in automotive antifreeze for corrosion control (see Corrosion and corrosion inhibitors). Borates are used as neutron absorbers in nuclear reactors. Several borates, which are registered with the Environmental Protection Agency (EPA) can be used for insecticidal purposes, eg, TIM-BOR. [Pg.205]

Uses. In spite of unique properties, there are few commercial appUcations for monolithic shapes of borides. They are used for resistance-heated boats (with boron nitride), for aluminum evaporation, and for sliding electrical contacts. There are a number of potential uses ia the control and handling of molten metals and slags where corrosion and erosion resistance are important. Titanium diboride and zirconium diboride are potential cathodes for the aluminum Hall cells (see Aluminum and aluminum alloys). Lanthanum hexaboride and cerium hexaboride are particularly useful as cathodes ia electronic devices because of their high thermal emissivities, low work functions, and resistance to poisoning. [Pg.219]

Boron trichlorides are highly reactive, toxic, and corrosive these ttihaUdes (BCl, BBr, BI ) react vigorously, even explosively, with water. High temperature decomposition of BX can yield toxic halogen-containing fumes. Safe handling, especially of BCl, has been reviewed (11,80). [Pg.224]

Materials made of siHcon nitride, siHcon oxynitride, or sialon-bonded siHcon carbide have high thermal shock and corrosion resistance and may be used for pump parts, acid spray nozzles, and in aluminum reduction ceUs (156—159). A very porous siHcon carbide foam has been considered for surface combustion burner plates and filter media. It can also be used as a substrate carrying materials such as boron nitride as planar diffusion source for semiconductor doping appHcations. [Pg.469]

Complexes of boron trifluoride and amines such as monoethylamine are of interest because of the very long pot lives possible. The disadvantages of these complexes are their hygroscopic nature and the corrosive effects of BF3 liberated during cure. [Pg.761]

Carbide-based cermets have particles of carbides of tungsten, chromium, and titanium. Tungsten carbide in a cobalt matrix is used in machine parts requiring very high hardness such as wire-drawing dies, valves, etc. Chromium carbide in a cobalt matrix has high corrosion and abrasion resistance it also has a coefficient of thermal expansion close to that of steel, so is well-suited for use in valves. Titanium carbide in either a nickel or a cobalt matrix is often used in high-temperature applications such as turbine parts. Cermets are also used as nuclear reactor fuel elements and control rods. Fuel elements can be uranium oxide particles in stainless steel ceramic, whereas boron carbide in stainless steel is used for control rods. [Pg.10]

As can be seen in Fig. 3.67, the corrosion resistance of amorphous alloys changes with the addition of metalloids, and the beneficial effect of a metaU loid in enhancing corrosion resistance based on passivation decreases in the order phosphorus, carbon, silicon, boron (Fig. 3.72). This is attributed partly to the difference in the speed of accumulation of passivating elements due to active dissolution prior to passivation... [Pg.639]

Heat treatment, e.g. 2 h at 600°C, improves the resistance to corrosion of nickel-boron and nickel-phosphorus electroless nickel deposits, especially to acid media. This presumably results from formation of a nickel-iron alloy layer . [Pg.537]

Other useful refractory nitrides for corrosion protection are silicon nitride (Si3N4) and boron nitride (BN). Silicon nitride has good corrosion resistance and is not attacked by most molten metals as shown in Table 17.6 (see Ch. 10). [Pg.441]

Boron nitride is one of the most outstanding corrosion-resistant materials. It is inert to gasoline, benzene, alcohol, acetone, chlorinated hydrocarbons and other organic solvents. It is not wetted by molten aluminum, copper, cadmium, iron, antimony, bismuth, silicon, germanium, nor by many molten salts and glasses. It is used extensively as crucible material, particularly for molten metals, glasses and ceramic processing. [Pg.442]

CVD diamond films can be used for electrochemical applications, especially in harsh or corrosive environments. Conducting diamond electrodes, made by adding boron to CVD diamond films, are very inert compared to other electrode materials (such as platinum). Such diamond electrodes may find applications in analysis of contaminants, such as nitrates, in water supplies, and even in the removal of those contaminants. [Pg.92]

Nickel barium titanium primrose priderite, formula and DCMA number, 7 347t Nickel-based alloys, properties of, 77 848t Nickel-base superalloys, 77 103 Nickel battery technology, 77 111 Nickel-beryllium alloys, 3 656-659 Nickel-boron deposition, 9 693-695, 708 Nickel brass, corrosion, 7 812 Nickel bromide, 77 110... [Pg.619]

Ferro-alloys Master alloys containing a significant amount of bon and a few elements more or less soluble in molten bon which improve properties of bon and steels. As additives they give bon and steel better characteristics (increased tensile sbength, wear resistance, corrosion resistance, etc.). For master alloy production carbothermic processes are used for large-scale ferro-sihcon, ferro-chromium, ferro-tungsten, ferro-manganese, ferro-nickel and metallothermic processes (mainly alumino and sihco-thermic) for ferro-titanium, ferro-vanadium, ferro-molybdenum, ferro-boron. [Pg.454]


See other pages where Boron corrosion is mentioned: [Pg.125]    [Pg.266]    [Pg.119]    [Pg.397]    [Pg.134]    [Pg.136]    [Pg.7]    [Pg.52]    [Pg.57]    [Pg.481]    [Pg.411]    [Pg.438]    [Pg.443]    [Pg.176]    [Pg.100]    [Pg.359]    [Pg.577]    [Pg.146]    [Pg.1300]    [Pg.737]    [Pg.272]    [Pg.72]    [Pg.410]    [Pg.59]    [Pg.120]    [Pg.307]    [Pg.135]    [Pg.464]    [Pg.905]    [Pg.120]    [Pg.417]   
See also in sourсe #XX -- [ Pg.161 , Pg.171 , Pg.176 ]




SEARCH



© 2024 chempedia.info