Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biosensors with optical detection

Enzyme-Based Biosensors with Optical Detection... [Pg.111]

Freeman M.K., Bachas L., Fiber-optic biosensor with fluorescence detection based on immobilized alkaline phosphatase, Biosensors Bioelectron. 1992 7 49. [Pg.44]

A flow injection optical fibre biosensor for choline was also developed55. Choline oxidase (ChOX) was immobilized by physical entrapment in a photo-cross-linkable poly(vinyl alcohol) polymer (PVA-SbQ) after adsorption on weak anion-exchanger beads (DEAE-Sepharose). In this way, the sensing layer was directly created at the surface of the working glassy carbon electrode. The optimization of the reaction conditions and of the physicochemical parameters influencing the FIA biosensor response allows the measurement of choline concentration with a detection limit of 10 pmol. The DEAE-based system also exhibited a good operational stability since 160 repeated measurements of 3 nmol of choline could be performed with a variation coefficient of 4.5%. [Pg.171]

Interferometric sensors frequently have also been applied to biosensor measurements. Thereby, the evanescent field technique (Mach-Zehnder interferometer) has been compared with other optical detection principles regarding information on layer structure and in case of biosensing30. The... [Pg.228]

The design and implementation of a portable fiber-optic cholinesterase biosensor for the detection and determination of pesticides carbaryl and dichlorvos was presented by Andreou81. The sensing bioactive material was a three-layer sandwich. The enzyme cholinesterase was immobilized on the outer layer, consisting of hydrophilic modified polyvinylidenefluoride membrane. The membrane was in contact with an intermediate sol-gel layer that incorporated bromocresol purple, deposited on an inner disk. The sensor operated in a static mode at room temperature and the rate of the inhibited reaction served as an analytical signal. This method was successfully applied to the direct analysis of natural water samples (detection and determination of these pesticides), without sample pretreatment, and since the biosensor setup is fully portable (in a small case), it is suitable for in-field use. [Pg.371]

The goal of this chapter will be to provide an overview of the use of planar, optically resonant nanophotonic devices for biomolecular detection. Nanophotonics23 24 represents the fusion of nanotechnology with optics and thus it is proposed that sensors based on this technology can combine the advantages of each as discussed above. Although many of the issues are the same, we focus here on optical resonance rather than plasmonic resonance (such as is used in emerging local SPR and surface-enhanced Raman spectroscopy-based biosensors). [Pg.449]

There is increasing interest in the use of specific sensor or biosensor detection systems with the FIA technique (Galensa, 1998). Tsafack et al. (2000) described an electrochemiluminescence-based fibre optic biosensor for choline with flow-injection analysis and Su et al. (1998) reported a flow-injection determination of sulphite in wines and fruit juices using a bulk acoustic wave impedance sensor coupled to a membrane separation technique. Prodromidis et al. (1997) also coupled a biosensor with an FIA system for analysis of citric acid in juices, fruits and sports beverages and Okawa et al. (1998) reported a procedure for the simultaneous determination of ascorbic acid and glucose in soft drinks with an electrochemical filter/biosensor FIA system. [Pg.126]

Seo et al. (1999) used a planar optic biosensor that measures the phase shift variation in refractive index due to antigen binding to antibody. In this method, they were able to detect S. enterica serovar T) himurium with a detection limit of 1 x 10 cfu/ml. When chicken carcass fluid was inoculated with 20 cfu/ml, the sensor was able to detect this pathogen after 12 h of nonselective enrichment. A compact fiber optic sensor was also used for detection of S. T) himurium at a detection limit of 1 X 10" cfu/ml (Zhou et al., 1997, 1998) however, its efficacy with food samples is unproven. Later, Kramer and Lim (2004) used the fiber optic sensor, RAPTOR , to detect this pathogen from spent irrigation water for alfalfa sprouts. They showed that the system can be used to detect Salmonella spiked at 50 cfu/g seeds. An evanescent wave-based multianalyte array biosensor (MAAB) was also employed for successful testing of chicken excreta and various food samples (sausage, cantaloupe, egg, sprout, and chicken carcass) for S. T) himurium (Taitt et ah, 2004). While some samples exhibited interference with the assay, overall, the detection limit for this system was reported to be 8 x 10 cfu/g. [Pg.12]

There has been some development of optical biosensors. Nitrate reductase was immobilised within a sol-gel matrix, with binding of nitrate ion (down to a limit of 10"6 M) causing a characteristic change in the optical absorption [132]. It is notable that this sensor was reversible, allowed selective nitrate detection over other physiologically significant anions and did not lose activity even over six months. Phosphate-binding protein was immobilised on a fibre-optic detector and could be used to measure phosphate with a detection limit of about 10 6 M [133]. [Pg.117]

Acetylcholineesterase A 350 pM diameter coherent imaging fiber coated on the distal surface with a planar layer of analyte-sensitive polymer that was thin enough not to affect the fiber s imaging capabilities. It was applied to a pH sensor array and an ACh biosensor array (each contain 6000 optical sensor). Fibers were coated with an immobilized layer of poly (hydroxyethylmethacrylate)-N-flurosceinylacrylamide and AChE-fluorescein isothiocyanate isomer poly (acryloamide-co-N-acryl oxysuccinimide), respectively. The response time of the pH sensor was 2 s for a 0.5 unit increase in pH. The biosensor had a detection limit of 35 pM ACh and a linear response in the range 0.1 mM. [90]... [Pg.41]

Another sensor based on a fiber-optic-based spectroelectrochemical probe uses a DNA/ethidium bromide system to take advantage of the biological recognition processes [92]. The concept of immobilizing electrochemical reagents on the end of an optical fibre is a useful addition to the field of bioanalytical sensors. Before this development, optical and electrochemical detection of DNA were performed separately. Optical and electrochemical detection of DNA are suitable for a DNA detection system [93, 94] and these techniques will enable a production of a cheap DNA biosensor with a rapid and quantitative response. [Pg.109]

Yeung, D., Gill, A., Maule, C. H., Davies, R. J. (1995) Detection and quantification of biomolecular interactions with optical biosensors. TrAC-Trends in Analytical Chemistry 14 49-56. [Pg.258]

A DNA optical sensor system was proposed by Cass and co-workers [35] based on the combination of sandwich solution hybridization, magnetic bead capture, flow injection and chemiluminescence for the rapid detection of DNA hybridization. Sandwich solution hybridization uses two sets of DNA probes, one labelled with biotin, the other with an enzyme marker and hybridization is performed in solution where the mobility is greater and the hybridization process is faster, rather than on a surface. The hybrids were bound to the streptavidin-coated magnetic beads through biotin-streptavidin binding reaction. A chemiluminescence fibre-optic biosensor for the detection of hybridization of horseradish peroxidase-labelled complementary DNA to covalent immobilized DNA probes was developed by Zhou and co-workers [36]. [Pg.388]

The first commercial SPR was launched hy Pharmacia Biosensor AB (presently Swedish BIAcore AB) in 1990. Since then, the device has been refined and now BIAcore [37] offers several models (BIACORE 3000, BIACORE 2000, BIACORE 1000, BIACORE X, J, Q, S51, and C models). The biosensors of BIACORE 1000 to 3000 are fully automated instruments, with a disposable sensor chip, an optical detection unit, an integrated micro-fiuidic cartridge, an autosampler, method programming and control software. Less expensive manually controlled alternatives cU e the BIACORE x and BiacoreQuant . [Pg.429]

A useful cell-based biosensor should have at least three components living cells as a signal generator upon stimulation, a cell culture component supporting cell growth, and an electrical/optical detection component for signal collection. In addition an assay that connects cell responses to a measurable parameter is necessary if the response itself is difficult to measure. For electrically excitable cells, their electrical activities are indicators for cell status. But for cells with no obvious electrical activity, sometimes a reporter is introduced to translate the cell response to electrical or optical signals. [Pg.713]

Enzyme biosensors have been described using a range of transduction elements (amper-ometry, potentiometry, optical and photo-thermal). The first biosensor was described in the literature by Clarck and Lyons (1962a) and was based on the use of glucose oxidase combined with electrochemical detection. Since then, this principle has been widely applied in biosensor development, and the enzyme systems used have been mainly oxido-reductases (e.g. tyrosinase, peroxidase and lactase) (Cass etal., 1984 Kulis and Vidziunaite, 2003), and hydrolases (choline esterases) (Andreescu etal., 2002 Nunes etal., 1998). [Pg.141]


See other pages where Biosensors with optical detection is mentioned: [Pg.746]    [Pg.2523]    [Pg.47]    [Pg.2587]    [Pg.1570]    [Pg.195]    [Pg.109]    [Pg.530]    [Pg.71]    [Pg.270]    [Pg.534]    [Pg.535]    [Pg.101]    [Pg.97]    [Pg.39]    [Pg.109]    [Pg.299]    [Pg.428]    [Pg.257]    [Pg.77]    [Pg.2229]    [Pg.448]    [Pg.477]    [Pg.99]    [Pg.176]    [Pg.233]    [Pg.111]    [Pg.97]    [Pg.265]    [Pg.147]    [Pg.14]    [Pg.16]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



Biosensor optical

Biosensors detection

Enzyme-Based Biosensors With Optical Detection

Enzyme-based biosensor with optical detection

Optical biosensors

Optical detection

© 2024 chempedia.info