Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biopolymer synthetic polymers

Matrix-assisted laser desorption ionisation (MALDI) MH+ (M - H) ToF, IT, FTMS Polar and some nonpolar biopolymers, synthetic polymers >250000... [Pg.358]

Related to ionic liquids are substances known as deep eutectic solvents or mixtures. A series of these materials based on choline chloride (HOCH2CH2NMe3Cl) and either zinc chloride or urea have been reported (Abbott et al., 2002 2003). The urea/choline chloride material has many of the advantages of more well-known ionic liquids (e.g. low volatility), but can be sourced from renewable feedstocks, is non-toxic and is readily biodegradable. However, it is not an inert solvent and this has been exploited in the functionalisation of the surface of cellulose fibres in cotton wool (Abbott et al, 2006). Undoubtedly, this could be extended to other cellulose-based materials, biopolymers, synthetic polymers and possibly even small molecules. [Pg.59]

Water-soluble biopolymers, synthetic polymers, and poly polymer- and silica-based columns depending on mobile -... [Pg.53]

Keywords Crystal growth Crystallization Biopolymer Synthetic polymer Interface Matrix Self-assembly... [Pg.80]

Polymers can be divided into two broad groups synthetic polymers and biopolymers. Synthetic polymers are synthesized by scientists, whereas biopolymers are synthesized by cells. Examples of biopolymers are DNA—the storage molecule for genetic information RNA and proteins—the molecules that facilitate biochemical transformations and polysaccharides—compounds that store energy and also function as structural materials. The structures and properties of these biopolymers are presented in other chapters. In this chapter, we will explore synthetic polymers. [Pg.1236]

In this section we briefly consider the osmotic pressure of polymers which carry an electric charge in solution. These include synthetic polymers with ionizable functional groups such as -NH2 and -COOH, as well as biopolymers such as proteins and nucleic acids. In this discussion we shall restrict our consideration... [Pg.568]

We have emphasized biopolymers in this discussion of the ultracentrifuge and in the discussion of diffusion in the preceding sections, because these two complementary experimental approaches have been most widely applied to this type of polymer. Remember that from the combination of the two phenomena, it is possible to evaluate M, f, and the ratio f/fo. From the latter, various possible combinations of ellipticity and solvation can be deduced. Although these methods can also be applied to synthetic polymers to determine M, they are less widely used, because the following complications are more severe with the synthetic polymers ... [Pg.641]

The same questions about the safety of organic flocculants have been raised ia other countries. The most drastic response has occurred ia Japan (7,77) and Swit2edand (77) where the use of any synthetic polymers for drinking water treatment is not permitted. Alum and PAC are the principal chemicals used ia Japan (7). Chitin, a biopolymer derived from marine animals, has been used ia Japan (80,81). Maximum allowed polymer doses have been set ia Prance and Germany (77). [Pg.37]

Biopolymers are the naturally occurring macromolecular materials that are the components of all living systems. There are three principal categories of biopolymers, each of which is the topic of a separate article in the Eniyclopedia proteins (qv) nucleic acids (qv) and polysaccharides (see Carbohydrates Microbial polysaccharides). Biopolymers are formed through condensation of monomeric units ie, the corresponding monomers are amino acids (qv), nucleotides, and monosaccharides, for proteins, nucleic acids, and polysaccharides, respectively. The term biopolymers is also used to describe synthetic polymers prepared from the same or similar monomer units as are the natural molecules. [Pg.94]

TSK-GEL PW type columns are commonly used for the separation of synthetic water-soluble polymers because they exhibit a much larger separation range, better linearity of calibration curves, and much lower adsorption effects than TSK-GEL SW columns (10). While TSK-GEL SW columns are suitable for separating monodisperse biopolymers, such as proteins, TSK-GEL PW columns are recommended for separating polydisperse compounds, such as polysaccharides and synthetic polymers. [Pg.106]

Polymer (Sections 7.10, 21.9, Chapter 31 introduction) A large molecule made up of repeating smaller units. For example, polyethylene is a synthetic polymer made from repeating ethylene units, and DNA is a biopolymer made of repeating deoxyribonucleotide units. [Pg.1248]

Chitosan has been associated with other biopolymers and with synthetic polymer dispersions to produce wound dressings. Biosynthetic wound dressings composed of a spongy sheet of chitosan and collagen, laminated with a gentamicyn sulphate-impregnated polyurethane membrane, have been produced and clinically tested with good results. [Pg.192]

The application areas for LC-MS, as will be illustrated later, are diverse, encompassing both qualitative and quantitative determinations of both high-and low-molecular-weight materials, including synthetic polymers, biopolymers, environmental pollutants, pharmaceutical compounds (drugs and their metabolites) and natural products. In essence, it is used for any compounds which are found in complex matrices for which HPLC is the separation method of choice and where the mass spectrometer provides the necessary selectivity and sensitivity to provide quantitative information and/or it provides structural information that cannot be obtained by using other detectors. [Pg.187]

Naturally occurring polysaccharides and their derivatives form the predominant group of water-soluble species generally used as thickeners to impart viscosity to treating fluids [1092]. Other synthetic polymers and biopolymers have found ancillary applications. Polymers increase the viscosity of the fi ac-turing fluid in comparatively small amounts. The increase in fluid viscosity of hydraulic fracturing fluids serves for improved proppant placement and fluid loss control. Table 17 summarizes polymers suitable for fracturing fluids. [Pg.240]

Production of all naturally occurring polymers in vivo is catalyzed by enzymes. Polymerizations catalyzed by an enzyme ( enzymatic polymerizations ) have received much attention as new methodology [6-11], since in recent years structural variation of synthetic targets on polymers has begun to develop highly selective polymerizations for the increasing demands in the production of various functional polymers in material science. So far, in vitro syntheses of not only biopolymers but also non-natural synthetic polymers through enzymatic catalysis have been achieved [6-11]. [Pg.239]

Abstract Synthetic polymers and biopolymers are extensively used within the field of tissue engineering. Some common examples of these materials include polylactic acid, polyglycolic acid, collagen, elastin, and various forms of polysaccharides. In terms of application, these materials are primarily used in the construction of scaffolds that aid in the local delivery of cells and growth factors, and in many cases fulfill a mechanical role in supporting physiologic loads that would otherwise be supported by a healthy tissue. In this review we will examine the development of scaffolds derived from biopolymers and their use with various cell types in the context of tissue engineering the nucleus pulposus of the intervertebral disc. [Pg.201]

Gel electrophoresis is widely used in the routine analysis and separation of many well-known biopolymers such as proteins or nucleic acids. Little has been reported concerning the use of this methodology for the analysis of synthetic polymers, undoubtedly since in many cases these polymers are not soluble in aqueous solution - a medium normally used for electrophoresis. Even for those water-soluble synthetic polymers, the broad molecular weight dispersities usually associated with traditional polymers generally preclude the use of electrophoretic methods. Dendrimers, however, especially those constructed using semi-controlled or controlled structure synthesis (Chapters 8 and 9), possess narrow molecular weight distribution and those that are sufficiently water solubile, usually are ideal analytes for electrophoretic methods. More specifically, poly(amidoamine) (PAMAM) and related dendrimers have been proven amendable to gel electrophoresis, as will be discussed in this chapter. [Pg.239]

Size exclusion (SEC) (gel permeation GPC) Organic or aqueous Porous gels of silica, synthetic polymers or biopolymers with exclusion limits from 102 upto 108 Mainly synthetic and biopolymers of mol.wt >2000, but also smaller molecules. [Pg.1085]


See other pages where Biopolymer synthetic polymers is mentioned: [Pg.91]    [Pg.171]    [Pg.563]    [Pg.153]    [Pg.153]    [Pg.91]    [Pg.171]    [Pg.563]    [Pg.153]    [Pg.153]    [Pg.16]    [Pg.178]    [Pg.477]    [Pg.257]    [Pg.56]    [Pg.710]    [Pg.239]    [Pg.124]    [Pg.81]    [Pg.110]    [Pg.242]    [Pg.229]    [Pg.742]    [Pg.316]    [Pg.327]    [Pg.568]    [Pg.70]    [Pg.128]    [Pg.5]    [Pg.1]    [Pg.9]    [Pg.102]    [Pg.291]    [Pg.10]    [Pg.129]    [Pg.196]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Biopolymers synthetic

Food packaging, biopolymers synthetic polymers

Polymer Synthetic polymers

Polymers biopolymers

Synthetic biopolymer

Synthetic polymers

© 2024 chempedia.info