Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biocatalysis systems

Previously, we have shown that functional secretion of OPH molecules into the periplasmic space induced about 2.8-fold higher specific whole cell OPH activity [10]. From the detail reaction kinetic studies in this work, we showed that this periplasmic space-secretion strategy provided much improved bioconversion capability and efficiency ( 1.8-fold) for Paraoxon as a model organophosphate compound. From these results, we confirmed that Tat-driven periplasmic secretion of OPH can be successfully employed to develop a whole cell biocatalysis system with notable enhanced bioconversion efficiency and capability for environmental toxic organophosphates. [Pg.176]

Mallin, H., Wulf, H., and Bomscheuer, U.T. (2013) A self-sufficient Baeyer-Villiger biocatalysis system... [Pg.62]

Biocatalysis Chemical reactions mediated by biological systems (microbial communities, whole organisms or cells, cell-free extracts, or purified enzymes aka catalytic proteins). [Pg.607]

In order to broaden the field of biocatalysis in ionic liquids, other enzyme classes have also been screened. Of special interest are oxidoreductases for the enan-tioselective reduction of prochiral ketones [40]. Formate dehydrogenase from Candida boidinii was found to be stable and active in mixtures of [MMIM][MeS04] with buffer (Entry 12) [41]. So far, however, we have not been able to find an alcohol dehydrogenase that is active in the presence of ionic liquids in order to make use of another advantage of ionic liquids that they increase the solubility of hydrophobic compounds in aqueous systems. On addition of 40 % v/v of [MMIM][MeS04] to water, for example, the solubility of acetophenone is increased from 20 mmol to 200 mmol L ... [Pg.342]

The use of ionic liquids (ILs) to replace organic or aqueous solvents in biocatalysis processes has recently gained much attention and great progress has been accomplished in this area lipase-catalyzed reactions in an IL solvent system have now been established and several examples of biotransformation in this novel reaction medium have also been reported. Recent developments in the application of ILs as solvents in enzymatic reactions are reviewed. [Pg.3]

However, the reactions were not enantioselective ones, though the most important aspect of the biocatalysis reaction should be in the enantioselective reaction. We and KragF independently reported the first enantioselective lipase-catalyzed reaction in February-March 2001. Since lipase was anchored by the IL solvent and remained in it after the extraction work-up of the product, we succeeded in demonstrating that recyclable use of the lipase in the [bmim][PFg] solvent system was possible (Fig. 2). ... [Pg.4]

Except for exploring its catalytic potential, CHMO from Acinetobacter has also been used as a model system for upscaling BVMO-mediated biocatalysis. [Pg.110]

The role of biocatalysis in two-phase systems has many parallels with the subject we have covered under extractive reactions. It appears that a two-phase system was originally considered for transformations of water insoluble substances like steroids. Now, a series of treatises are available which teach us that the maximum value of the apparent equilibrium constant for a second-order reaction in a two-phase system can exceed the equilibrium... [Pg.161]

Boundary membranes play a key role in the cells of all contemporary organisms, and simple models of membrane function are therefore of considerable interest. The interface of two immiscible liquids has been widely used for this purpose. For example, the fundamental processes of photosynthesis, biocatalysis, membrane fusion and interactions of cells, ion pumping, and electron transport have all been investigated in such interfacial systems. [Pg.8]

There are many advantages of two-phase systems over aqueous systems when they are used as biocatalysis media [21,22,26,27] components (substrates and/or products) can be... [Pg.554]

General rules need to be adapted for different biotransformation processes because they are not based on the specific study of all systems. Biocatalysis conditions are optimized when carrying out experiments designed to increase knowledge of the process. [Pg.556]

Biocatalysis localization in the biphasic medium depends on physicochemical properties of the reactants. When all the chemical species involved in the reaction are hydro-phobic, catalysis occurs at the liquid-liquid interface. However, when the substrate is hydrophobic (initially dissolved in the apolar phase) and the product is hydrophilic (remains in the aqueous phase), the reaction occurs in the aqueous phase [25]. The majority of biphasic systems use sparingly water-soluble substrates and yield hydrophobic products therefore, the aqueous phase serves as a biocatalyst container [34,35] [Fig. 2(a)]. Nevertheless, in some systems, one of the reactants (substrate or product) can be soluble in the aqueous phase [23,36-38] (Fig. 2(b), (c)). [Pg.557]

A common characteristic of metabolic pathways is that the product of one enzyme in sequence is the substrate for the next enzyme and so forth. In vivo, biocatalysis takes place in compartmentalized cellular structure as highly organized particle and membrane systems. This allows control of enzyme-catalyzed reactions. Several multienzyme systems have been studied by many researchers. They consist essentially of membrane- [104] and matrix- [105,106] bound enzymes or coupled enzymes in low water media [107]. [Pg.574]

The present section deals with the improvement in the performance of biocatalysis when carried out in organic-aqueous biphasic systems. Such systems are very useful in equilibrium reactions and conversion yield where substrates and products can be dissolved and drawn into different phases. Subsequently the synthesis in the reactive aqueous phase is allowed to continue. [Pg.575]

As proven in this review and other papers, organic-aqueous biphasic media have been useful in many areas of biocatalysis applications. We summarize the potential advantages in carrying out biocatalysis in biphasic systems ... [Pg.581]

The present chapter reviews applications in biocatalysis of the ONIOM method. The focus is on studies performed in our research group, in most cases using the two-layer ONIOM(QM MM) approach as implemented in Gaussian [23], The studied systems include methane monooxygenase (MMO), ribonucleotide reductase (RNR) [24, 25], isopenicillin N synthase (IPNS) [26], mammalian Glutathione peroxidase (GPx) [27,28], Bi2-dependent methylmalonyl-CoA mutase [29] and PLP-dependent P-lyase [30], These systems will be described in more detail in the following sections. ONIOM applications to enzymatic systems performed by other research groups will be only briefly described. [Pg.31]

Apart from immunoassays, enzyme assays can also be used to detect certain substrates in a clinical diagnostic setting. The benefits of performing enzymatic assays on microchips are the analytical power and minimal reagent use in microfluidic systems combined with the selectivity and amplification factors that come with biocatalysis. [Pg.368]


See other pages where Biocatalysis systems is mentioned: [Pg.6]    [Pg.41]    [Pg.292]    [Pg.422]    [Pg.87]    [Pg.6]    [Pg.41]    [Pg.292]    [Pg.422]    [Pg.87]    [Pg.158]    [Pg.318]    [Pg.15]    [Pg.188]    [Pg.237]    [Pg.265]    [Pg.97]    [Pg.452]    [Pg.312]    [Pg.55]    [Pg.704]    [Pg.555]    [Pg.22]    [Pg.347]    [Pg.14]    [Pg.16]    [Pg.30]    [Pg.36]    [Pg.335]    [Pg.443]    [Pg.225]    [Pg.335]    [Pg.338]    [Pg.338]    [Pg.36]   
See also in sourсe #XX -- [ Pg.348 , Pg.349 , Pg.350 , Pg.351 , Pg.352 , Pg.353 , Pg.354 , Pg.355 , Pg.356 , Pg.357 , Pg.358 , Pg.359 , Pg.360 , Pg.361 ]




SEARCH



Biocatalysis

Biocatalysis in Biphasic Systems Oxynitrilases

Biocatalysis redox systems

© 2024 chempedia.info