Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Medium dependence

The ideal high level heat-transfer medium would have excellent heat-transfer capabiUty over a wide temperature range, be low in cost, noncorrosive to common materials of constmction, nondammable, ecologically safe, and thermally stable. It also would remain Hquid at winter ambient temperatures and afford high rates of heat transfer. In practice, the value of a heat-transfer medium depends on several factors its physical properties in relation to system efficiency its thermal stabiUty at the service temperature its adaptabiUty to various systems and certain of its physical properties. [Pg.502]

The ability of an admix to be retained on the filter medium depends on both the suspension s concentration and the filtration rate during this initial precoat stage. The same relationships for porosity and the specific resistance of the cake as functions of suspension concentration and filtration rate apply equally to filter aid applications. [Pg.108]

The radicals formed by imimolecular rearrangement or fragmentation of the primary radicals arc often termed secondary radicals. Often the absolute rate constants for secondary radical formation are known or can be accurately determined. These reactions may then be used as radical clocks",R2° lo calibrate the absolute rate constants for the bimolecular reactions of the primary radicals (e.g. addition to monomers - see 3.4). However, care must be taken since the rate constants of some clock reactions (e.g. f-butoxy [3-scission21) are medium dependent (see 3.4.2.1.1). [Pg.54]

The heterogeneity of the reaction medium is also important in determining the molecular weight and in solution polymerization of maeromonomers. The magnitude of the effect varies according to the solvent quality. PS macromonomer chains in good solvents (e.g. toluene) have au extended conformation whereas in poor solvents (e.g. melhylcyclohexane) chains are tightly coiled.89 As a consequence, the radical center may see ail environment that is medium dependent (see also Sections 7.6.5 and 8.3.7). [Pg.428]

Since the rate was independent of acidity even over the range where H0 and pH differ, and the concentration of free amine is inversely proportional to the acidity function it follows that the rate of substitution is proportional to h0. If the substitution rate was proportional to [H30+] then a decrease in rate by a factor of 17 should be observed on changing [H+] from 0.05 to 6.0. This was not observed and the discrepancy is not a salt effect since chloride ion had no effect. Thus the rate of proton transfer from the medium depends on the acidity function, yet the mechanism of the reaction (confirmed by the isotope effect studies) is A-SE2, so that again correlation of rate with acidity function is not a satisfactory criterion of the A-l mechanism. [Pg.356]

The importance of solvation on reaction surfaces is evident in striking medium dependence of reaction rates, particularly for polar reactions, and in variations of product distributions as for methyl formate discussed above and of relative reactivities (18,26). Thus, in order to obtain a molecular level understanding of the influence of solvation on the energetics and courses of reactions, we have carried out statistical mechanics simulations that have yielded free energy of activation profiles (30) for several organic reactions in solution (11.18.19.31. ... [Pg.211]

The nature and intensity of the attractive or repulsive forces among particles in a state of suspension in a liquid medium depend primarily on the electrostatic charges of the particle. Other factors contributing to these forces are particle size and surface area of the solid, the physical properties of the suspending medium, the presence of adsorbed gases or liquids, the proximity of the particles, and Brownian movement (5). [Pg.85]

The energy of an ion in a given medium depends not only on chemical forces but also on the electrostatic held hence the chemical potential of an ion j customarily is called its electrochemical potential and labeled fi. The electrostatic potential energy of an ion j when reckoned per mole is given by ZjF, where / is the electrostatic (inner) potential of the phase containing the ion a plus sign for cations and a minus sign for anions. Hence, the electrochemical potential can be written as the sum of two terms ... [Pg.37]

Biocatalysis localization in the biphasic medium depends on physicochemical properties of the reactants. When all the chemical species involved in the reaction are hydro-phobic, catalysis occurs at the liquid-liquid interface. However, when the substrate is hydrophobic (initially dissolved in the apolar phase) and the product is hydrophilic (remains in the aqueous phase), the reaction occurs in the aqueous phase [25]. The majority of biphasic systems use sparingly water-soluble substrates and yield hydrophobic products therefore, the aqueous phase serves as a biocatalyst container [34,35] [Fig. 2(a)]. Nevertheless, in some systems, one of the reactants (substrate or product) can be soluble in the aqueous phase [23,36-38] (Fig. 2(b), (c)). [Pg.557]

Obviously, the diffusion coefficient of molecules in a porous medium depends on the density of obstacles that restrict the molecular motion. For self-similar structures, the fractal dimension df is a measure for the fraction of sites that belong... [Pg.209]

Apart from the classification based on the mode of generation of cavities, cavitation can also be classified as transient cavitation and stable cavitation [3]. The classification is based on the maximum radius reached (resonant size), life time of cavity (which decides the extent of collapse) in the bulk of liquid and the pattern of cavity collapse. Generation of transient or stable cavitation usually depends on the set of operating parameters and constitution of the liquid medium. Depending on the specific application under question, it is very important to select particular set of operating conditions such that maximum effects are obtained with minimum possible energy consumption. [Pg.33]

Instead of the quantity given by Eq. (15), the quantity given by Eq. (10) was treated as the activation energy of the process in the earlier papers on the quantum mechanical theory of electron transfer reactions. This difference between the results of the quantum mechanical theory of radiationless transitions and those obtained by the methods of nonequilibrium thermodynamics has also been noted in Ref. 9. The results of the quantum mechanical theory were obtained in the harmonic oscillator model, and Eqs. (9) and (10) are valid only if the vibrations of the oscillators are classical and their frequencies are unchanged in the course of the electron transition (i.e., (o k = w[). It might seem that, in this case, the energy of the transition and the free energy of the transition are equal to each other. However, we have to remember that for the solvent, the oscillators are the effective ones and the parameters of the system Hamiltonian related to the dielectric properties of the medium depend on the temperature. Therefore, the problem of the relationship between the results obtained by the two methods mentioned above deserves to be discussed. [Pg.104]

With all pigments, the particle size distribution of the pigment as synthesised is the most important single factor in ensuring its optimum potential performance in use, but this potential can only be achieved if the particles are properly dispersed. To understand why particle size is so important it is necessary to look in some detail at the optical behaviour of tiny pigment particles dispersed in a transparent organic medium. The exact nature of this medium depends on whether the end-use is a paint, a printing ink or a plastic. [Pg.82]

Rattet, L. S., Williams, A. D., Goldstein, J. H. Medium Dependent Geminal Coupling in Open Chain sp3 Hybridized Systems (Acetals). J. Mol. Spectry, 26, 281 (1968). [Pg.187]

There is a large temperature variation of solubility for the tris-dmpp complex of indium (143) but a much smaller variation for tris(malto-lato)aluminum (242) in aqueous solution. The solubility of the former increases by a factor of 3.5, of the latter by only 1.3 times, on raising the temperature from 298 to 310 K, i.e., from the standard 25°C to the physiological 37°C. The enthalpy of solution of Al(malt)3 in water is 23kJmol , but is medium-dependent, rising to 56kJmol in 80% methanol. [Pg.205]

Two alternative methods can be used to describe the ionic medium dependence of equilibrium constants ... [Pg.276]

One method takes into account the individual characteristics of the ionic media by using a medium-dependent expression for the activity coefficients of the species involved in the equilibrium reactions. The medium dependence is described by virial or ion interaction coefficients as used in the Pitzer equations and in the specific ion interaction model. [Pg.276]

Urea-formaldehyde resins are generally prepared by condensation in aqueous basic medium. Depending on the intended application, a 50-100% excess of formaldehyde is used. All bases are suitable as catalysts provided they are partially soluble in water. The most commonly used catalysts are the alkali hydroxides. The pH value of the alkaline solution should not exceed 8-9, on account of the possible Cannizzaro reaction of formaldehyde. Since the alkalinity of the solution drops in the course of the reaction, it is necessary either to use a buffer solution or to keep the pH constant by repeated additions of aqueous alkali hydroxide. Under these conditions the reaction time is about 10-20 min at 50-60 C. The course of the condensation can be monitored by titration of the unused formaldehyde with sodium hydrogen sulfite or hydroxylamine hydrochloride. These determinations must, however, be carried out quickly and at as low temperature as possible (10-15 °C), otherwise elimination of formaldehyde from the hydroxymethyl compounds already formed can falsify the analysis. The isolation of the soluble condensation products is not possible without special precautions, on account of the facile back-reaction it can be done by pumping off the water in vacuum below 60 °C imder weakly alkaline conditions, or better by careful freeze-drying. However, the further condensation to crosslinked products is nearly always performed with the original aqueous solution. [Pg.300]

In second harmonic generation, light of angular frequency oo pass through a crystal and generates a beam of angular frequency 2 . With conventional light sources the electric polarization induced in the medium depends linearly on the electric held ... [Pg.267]

Note that these definitions of optical rotation and circular dichroism for a particulate medium depend on the choice of the horizontal direction unless the medium is invariant with respect to arbitrary rotation about an axis parallel to the incident beam. [Pg.192]


See other pages where Medium dependence is mentioned: [Pg.1886]    [Pg.401]    [Pg.266]    [Pg.344]    [Pg.66]    [Pg.72]    [Pg.58]    [Pg.985]    [Pg.318]    [Pg.252]    [Pg.205]    [Pg.166]    [Pg.101]    [Pg.28]    [Pg.182]    [Pg.184]    [Pg.840]    [Pg.188]    [Pg.353]    [Pg.231]    [Pg.137]    [Pg.154]    [Pg.277]    [Pg.188]    [Pg.287]    [Pg.104]    [Pg.518]    [Pg.188]    [Pg.68]    [Pg.87]    [Pg.576]   
See also in sourсe #XX -- [ Pg.32 , Pg.83 ]




SEARCH



© 2024 chempedia.info