Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bioaccumulation partition coefficients

The toxicological or cumulative effect of illicit drugs on the ecosystems has not been studied yet. Moreover, their fate and transport in the environment is to a big extent still unknown. Due to their physical-chemical properties (octanol-water partition coefficient, solubility, etc.) some of them, such as cannabinoids, are likely to bioaccumulate in organisms or concentrate in sediments whereas the rest, much more polar compounds, will tend to stay in aqueous environmental matrices. However, continuous exposure of aquatic organisms to low aquatic concentrations of these substances, some of them still biologically active (e.g., cocaine (CO), morphine (MOR) and MDMA) may cause undesirable effects on the biota. [Pg.204]

Gossett RW, Brown DA, Young DR. 1983. Predicting the bioaccumulation of organic compounds in marine organisms using octanol/water partition coefficients. Mar Pollut Bull 14 387-392. [Pg.268]

Based on the relatively low value of the octanol/water partition coefficient (K° ) for acrylonitrile (log K OW = -0. 92) (Verschueren 1983), it would notbe expected tnat acrylonitrile will strongly bioaccumulate... [Pg.83]

Tulp, M. T. M., Hutzinger, O. (1978) Some thoughts on the aqueous solubilities and partition coefficients of PCB, and the mathematical correlation between bioaccumulation and physico-chemical properties. Chemosphere 7, 849-860. [Pg.58]

Chiou, C., Freed, D., Schmedding, D., Kohnert, R. (1977) Partition coefficient and bioaccumulation of selected organic chemicals. Environ. Sci. Technol. 11(5),475 -78. [Pg.607]

Geyer, H.J., Politzki, G., Freitag, D. (1984) Prediction of ecotoxicological behaviour of chemicals relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by alga chlorella. Chemosphere 13(2), 269-284. [Pg.608]

Hawker, D.W., Connell, D.W. (1985) Relationships between partition coefficient, uptake rate constant, clearance rate constant and time to equilibration for bioaccumulation. Chemosphere 14, 1205-1219. [Pg.907]

Fisk, A.T., R.J. Norstrom, C.D. Cymbalisty, and D.C.G. Muir. 1998. Dietary accumulation and depuration of hydrophobic organochlorines bioaccumulation parameters and their relationship with the octanol/water partition coefficient. Environ. Toxicol. Chem. 17 951-961. [Pg.1327]

Laskowski [1] has thoroughly reviewed the physico-chemical properties of the SPs, and these are summarized briefly below. SPs are typically of low water solubility (in the low microgram per liter range) and are highly nonpolar (logarithmic octanol water partition coefficients of around 6-7), indicating potential for bioaccumulation. Fish bioconcentration factors (BCF) of several hundred to several thousand are reported however metabolism limits the amount of bioaccumulation,... [Pg.138]

The octanol-water partition coefficient, Kow, is the most widely used descriptor of hydrophobicity in quantitative structure activity relationships (QSAR), which are used to describe sorption to organic matter, soil, and sediments [15], bioaccumulation [104], and toxicity [105 107J. Octanol is an amphiphilic bulk solvent with a molar volume of 0.12 dm3 mol when saturated with water. In the octanol-water system, octanol contains 2.3 mol dm 3 of water (one molecule of water per four molecules of octanol) and water is saturated with 4.5 x 10-3 mol dm 3 octanol. Octanol is more suitable than any other solvent system (for) mimicking biological membranes and organic matter properties, because it contains an aliphatic alkyl chain for pure van der Waals interactions plus the alcohol group, which can act as a hydrogen donor and acceptor. [Pg.217]

The major route for bioaccumulation of hydrophobic organic compounds in aquatic animals is passive diffusion over cell membranes. In fish, the gill epithelia are the predominant port of entry, with less than 40% of uptake across the skin [181]. Since permeability of the membrane is a direct function of the membrane-water partition coefficient and the diffusion coefficient across the membrane interior [182], the bioconcentration factor (logBCF) can be directly correlated with log K0Vl. or log Km%v for compounds with intermediate hydro-phobicity [183,184],... [Pg.239]

The dominant transport process from water is volatilization. Based on mathematical models developed by the EPA, the half-life for M-hexane in bodies of water with any degree of turbulent mixing (e.g., rivers) would be less than 3 hours. For standing bodies of water (e.g., small ponds), a half-life no longer than one week (6.8 days) is estimated (ASTER 1995 EPA 1987a). Based on the log octanol/water partition coefficient (i.e., log[Kow]) and the estimated log sorption coefficient (i.e., log[Koc]) (see Table 3-2), ii-hexane is not expected to become concentrated in biota (Swann et al. 1983). A calculated bioconcentration factor (BCF) of 453 for a fathead minnow (ASTER 1995) further suggests a low potential for -hcxanc to bioconcentrate or bioaccumulate in trophic food chains. [Pg.191]

Anliker, R. and Moser, P. The limits of bioaccumulation of organic pigments in fish their relation to the partition coefficient and the solubility in water and octanol, Ecotoxicol. Environ. Sal, 13(l) 43-52, 1987. [Pg.1625]

Chiou, C.T., Freed, V.H., Schmedding, D.W., and Kohnert, R.L. Partition coefficients and bioaccumulation of selected organic... [Pg.1643]

Renberg, L.O., Sundstrom, S.G., and Rosen-Olofsson, A.-C. The determination of partition coefficients of organic compounds in technical products and waste waters for the estimation of their bioaccumulation potential using reversed phase thin layer chromatography, Toxicol. Environ. Chem., 10 333-349, 1985. [Pg.1714]

Food Chain Bioaccumulation. 1,2-Diphenylhydrazine reacts rapidly in water to form azobenzene and other oxidation products (half-life in wastewater is 60 minutes). Because of this and based upon the log octanol/water partition coefficient, no bioaccumulation is expected in any aquatic organism. [Pg.56]

Potential for bioaccumulation Due to their high Log values and high fat blood partition coefficient, the cyclic siloxanes are likely to be stored into the lipid tissue. However, bioaccumulation is not dependent just on the lipophilicity of the compound, but also in how fast it leaves the contaminated organism. Other indicators of bioaccumulation are the bioconcentration factor (BCF) and bioaccumulation factor (BAF). Values over 5,000 are usually characteristic for the bioaccumulative compounds. D4 has a BCF of 12,400 L/kg [293], D5 of 7,060 L/kg [279], and D6 of 1,160 L/kg [280], values calculated for fish. [Pg.287]

Dichlorobenzene is expected to bioconcentrate in aquatic organisms. The high octanol-water partition coefficient (K, ) value of 2,455 (Leo et al. 1971) also suggests that 1,4-dichlorobenzene has a moderate to high potential for bioaccumulation. A calculated bioconcentration factor (BCF) of 267 was reported for the fathead minnow (Pimephales promelas) (ASTER 1995). Measured mean BCF values of 370 and 720 were experimentally determined for rainbow trout exposed to water concentrations of... [Pg.184]

The logarithm of the n-octanol/water partition coefficient (log Kow is a useful preliminary indicator of the bioconcentration potential of a compound. The calculated log K values for 1,3-DNB and 1,3,5-TNB are 1.52 and 1.18 (Deneer et al. 1987), respectively, suggesting a low potential for bioaccumulation. An experimental bioconcentration factor (BCF) of 1,3-DNB for the guppy, Poecilia reticulata, was reported to be 74.13 (Deneer et al. 1987). This BCF indicates that bioaccumulation in aquatic organisms is not an important fate process. BCF data were not located for 1,3,5-TNB. [Pg.82]

The partition coefficient Kq of an organic compound in the 1-octanol/water system is used to assess the bioaccumulation potential and the distribution pattern of drugs and pollutants. The partition coefficient of imidazole and ILs strongly depends on the hydrogen bond formed by these molecules and is less than one due to the high solubility in water. The low value of the 1-octanol/water partition coefficient is required for new substances, solvents, insecticides to avoid bioaccumulation. Kqw is an extremely important quantity because it is the basis of correlations to calculate bioaccumulation, toxicity, and sorption to soils and sediments. Computing the activity of a chemical in human, fish, or animal lipid, which is where pollutants that are hydrophobic will appear, is a difficult task. Thus, it is simpler to measure the 1-octanol/water partition coefficient. This parameter is used as the primary parameter characterizing hydrophobisity. [Pg.31]

Octanol/Water Partition Coefficient (Kow) — the equilibrium ratio of the concentrations of material partitioned between octanol and water. This coefficient is considered to be an index of the potential of a chemical to be bioaccumulated. Higher values of K, are associated with greater bioaccumulative potential. [Pg.201]


See other pages where Bioaccumulation partition coefficients is mentioned: [Pg.543]    [Pg.543]    [Pg.48]    [Pg.89]    [Pg.212]    [Pg.244]    [Pg.291]    [Pg.96]    [Pg.28]    [Pg.50]    [Pg.1239]    [Pg.1456]    [Pg.128]    [Pg.189]    [Pg.82]    [Pg.38]    [Pg.173]    [Pg.174]    [Pg.181]    [Pg.184]    [Pg.122]    [Pg.140]    [Pg.25]    [Pg.219]    [Pg.122]    [Pg.89]    [Pg.1239]   
See also in sourсe #XX -- [ Pg.271 ]




SEARCH



BIOACCUMULATIVE

Bioaccumulation

Bioaccumulation coefficients

Bioaccumulation partition coefficient calculations

© 2024 chempedia.info