Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor-liquid equilibrium binary system

Obtain (or plot from data) a phase diagram for the benzene/toluene system. Vapor-liquid equilibrium behavior of binary systems can be represented by a temperature-composition diagram at... [Pg.118]

Two additional illustrations are given in Figures 6 and 7 which show fugacity coefficients for two binary systems along the vapor-liquid saturation curve at a total pressure of 1 atm. These results are based on the chemical theory of vapor-phase imperfection and on experimental vapor-liquid equilibrium data for the binary systems. In the system formic acid (1) - acetic acid (2), <() (for y = 1) is lower than formic acid at 100.5°C has a stronger tendency to dimerize than does acetic acid at 118.2°C. Since strong dimerization occurs between all three possible pairs, (fij and not... [Pg.35]

For systems of type II, if the mutual binary solubility (LLE) data are known for the two partially miscible pairs, and if reasonable vapor-liquid equilibrium (VLE) data are known for the miscible pair, it is relatively simple to predict the ternary equilibria. For systems of type I, which has a plait point, reliable calculations are much more difficult. However, sometimes useful quantitative predictions can be obtained for type I systems with binary data alone provided that... [Pg.63]

Figure 15 shows results for a difficult type I system methanol-n-heptane-benzene. In this example, the two-phase region is extremely small. The dashed line (a) shows predictions using the original UNIQUAC equation with q = q. This form of the UNIQUAC equation does not adequately fit the binary vapor-liquid equilibrium data for the methanol-benzene system and therefore the ternary predictions are grossly in error. The ternary prediction is much improved with the modified UNIQUAC equation (b) since this equation fits the methanol-benzene system much better. Further improvement (c) is obtained when a few ternary data are used to fix the binary parameters. [Pg.66]

In Equation (24), a is the estimated standard deviation for each of the measured variables, i.e. pressure, temperature, and liquid-phase and vapor-phase compositions. The values assigned to a determine the relative weighting between the tieline data and the vapor-liquid equilibrium data this weighting determines how well the ternary system is represented. This weighting depends first, on the estimated accuracy of the ternary data, relative to that of the binary vapor-liquid data and second, on how remote the temperature of the binary data is from that of the ternary data and finally, on how important in a design the liquid-liquid equilibria are relative to the vapor-liquid equilibria. Typical values which we use in data reduction are Op = 1 mm Hg, = 0.05°C, = 0.001, and = 0.003... [Pg.68]

Multicomponent distillations are more complicated than binary systems due primarily to the actual or potential involvement or interaction of one or more components of the multicomponent system on other components of the mixture. These interactions may be in the form of vapor-liquid equilibriums such as azeotrope formation, or chemical reaction, etc., any of which may affect the activity relations, and hence deviations from ideal relationships. For example, some systems are known to have two azeotrope combinations in the distillation column. Sometimes these, one or all, can be broken or changed in the vapor pressure relationships by addition of a third chemical or hydrocarbon. [Pg.68]

Schwartzentruber J., F. Galivel-Solastiuk and H. Renon, "Representation of the Vapor-Liquid Equilibrium of the Ternary System Carbon Dioxide-Propane-Methanol and its Binaries with a Cubic Equation of State. A new Mixing Rule", Fluid Phase Equilibria, 38,217-226 (1987). [Pg.400]

Although the methods developed here can be used to predict liquid-liquid equilibrium, the predictions will only be as good as the coefficients used in the activity coefficient model. Such predictions can be critical when designing liquid-liquid separation systems. When predicting liquid-liquid equilibrium, it is always better to use coefficients correlated from liquid-liquid equilibrium data, rather than coefficients based on the correlation of vapor-liquid equilibrium data. Equally well, when predicting vapor-liquid equilibrium, it is always better to use coefficients correlated to vapor-liquid equilibrium data, rather than coefficients based on the correlation of liquid-liquid equilibrium data. Also, when calculating liquid-liquid equilibrium with multicomponent systems, it is better to use multicomponent experimental data, rather than binary data. [Pg.72]

In contrast to the Gibbs ensemble discussed later in this chapter, a number of simulations are required per coexistence point, but the number can be quite small, especially for vapor-liquid equilibrium calculations away from the critical point. For example, for a one-component system near the triple point, the density of the dense liquid can be obtained from a single NPT simulation at zero pressure. The chemical potential of the liquid, in turn, determines the density of the (near-ideal) vapor phase so that only one simulation is required. The method has been extended to mixtures [12, 13]. Significantly lower statistical uncertainties were obtained in [13] compared to earlier Gibbs ensemble calculations of the same Lennard-Jones binary mixtures, but the NPT + test particle method calculations were based on longer simulations. [Pg.356]

Horstmann, S., Wilken, M., Fischer, K., Gmehling, J. (2004) Isothermal vapor-liquid equilibrium and excess enthalpy data for the binary systems propylene oxide + 2-methylpentane and difluoromethane (R32) + pentafluoroethane (R125). J. Chem. Eng. Data 49,1504-1507. [Pg.399]

Separation systems include in their mathematical models various vapor-liquid equilibrium (VLE) correlations that are specific to the binary or multicomponent system of interest. Such correlations are usually obtained by fitting VLE data by least squares. The nature of the data can depend on the level of sophistication of the experimental work. In some cases it is only feasible to measure the total pressure of a system as a function of the liquid phase mole fraction (no vapor phase mole fraction data are available). [Pg.451]

Chapter 17 - Vapor-liquid equilibrium (VLE) data are important for designing and modeling of process equipments. Since it is not always possible to carry out experiments at all possible temperatures and pressures, generally thermodynamic models based on equations on state are used for estimation of VLE. In this paper, an alternate tool, i.e. the artificial neural network technique has been applied for estimation of VLE for the binary systems viz. tert-butanol+2-ethyl-l-hexanol and n-butanol+2-ethyl-l-hexanol. The temperature range in which these models are valid is 353.2-458.2K at atmospheric pressure. The average absolute deviation for the temperature output was in range 2-3.3% and for the activity coefficient was less than 0.009%. The results were then compared with experimental data. [Pg.15]

Estimation of Vapor Liquid Equilibrium of Binary Systems Tert-Butanol+2-Ethyl-1-HexanolandN-Butanol+2-Ethyl-1-Hexanol Using Artificial Neural Network... [Pg.249]

The precise vapor-liquid equilibrium (VLE) data of binary mixtures like alcohol-alcohol are important to design many chemical processes and separation operations. The VLE investigations of binary systems have been the subject of much interest in recent years[l-9]. [Pg.249]

Estimation of Vapor Liquid Equilibrium of Binary Systems... [Pg.251]

A wide variety of data for mean ionic activity coefficients, osmotic coefficients, vapor pressure depression, and vapor-liquid equilibrium of binary and ternary electrolyte systems have been correlated successfully by the local composition model. Some results are shown in Table 1 to Table 10 and Figure 3 to Figure 7. In each case, the chemical equilibrium between the species has been ignored. That is, complete dissociation of strong electrolytes has been assumed. This assumption is not required by the local composition model but has been made here in order to simplify the systems treated. [Pg.75]

Another type of ternary electrolyte system consists of two solvents and one salt, such as methanol-water-NaBr. Vapor-liquid equilibrium of such mixed solvent electrolyte systems has never been studied with a thermodynamic model that takes into account the presence of salts explicitly. However, it should be recognized that the interaction parameters of solvent-salt binary systems are functions of the mixed solvent dielectric constant since the ion-molecular electrostatic interaction energies, gma and gmc, depend on the reciprocal of the dielectric constant of the solvent (Robinson and Stokes, (13)). Pure component parameters, such as gmm and gca, are not functions of dielectric constant. Results of data correlation on vapor-liquid equilibrium of methanol-water-NaBr and methanol-water-LiCl at 298.15°K are shown in Tables 9 and 10. [Pg.85]

Two activity coefficient models have been developed for vapor-liquid equilibrium of electrolyte systems. The first model is an extension of the Pitzer equation and is applicable to aqueous electrolyte systems containing any number of molecular and ionic solutes. The validity of the model has been shown by data correlation studies on three aqueous electrolyte systems of industrial interest. The second model is based on the local composition concept and is designed to be applicable to all kinds of electrolyte systems. Preliminary data correlation results on many binary and ternary electrolyte systems suggest the validity of the local composition model. [Pg.86]

Vapor-liquid equilibrium data for the two binary systems (11) were used to calculate the standard-state fugacities required in Equations 6 and 20. In the temperature range 0-50°C, there fugacities can be expressed by ... [Pg.730]

Several authors have attempted to correlate the vapor-liquid equilibrium (VLE) data for binary systems in the presence of salts at various concentrations. Johnson and Furter (4) successfully correlated a large number of systems consisting of an alcohol, water, and a salt at saturation, by the following equation ... [Pg.9]

A review is presented of techniques for the correlation and prediction of vapor-liquid equilibrium data in systems consisting of two volatile components and a salt dissolved in the liquid phase, and for the testing of such data for thermodynamic consistency. The complex interactions comprising salt effect in systems which in effect consist of a concentrated electrolyte in a mixed solvent composed of two liquid components, one or both of which may be polar, are discussed. The difficulties inherent in their characterization and quantitative treatment are described. Attempts to correlate, predict, and test data for thermodynamic consistency in such systems are reviewed under the following headings correlation at fixed liquid composition, extension to entire liquid composition range, prediction from pure-component properties, use of correlations based on the Gibbs-Duhem equation, and the recent special binary approach. [Pg.32]

The thermodynamic excess functions for the 2-propanol-water mixture and the effects of lithium chloride, lithium bromide, and calcium chloride on the phase equilibrium for this binary system have been studied in previous papers (2, 3). In this paper, the effects of lithium perchlorate on the vapor-liquid equilibrium at 75°, 50°, and 25°C for the 2-propanol-water system have been obtained by using a dynamic method with a modified Othmer still. This system was selected because lithium perchlorate may be more soluble in alcohol than in water (4). [Pg.81]

Vapor-liquid equilibrium data obtained for the 2-propanol-water binary system at 75 °C agreed well with the values calculated from the total pressure data used in the numerical method of Mixon et al. (9). Thus, the apparatus used in this work gives consistent data. [Pg.84]

Vapor-liquid equilibrium data at atmospheric pressure (690-700 mmHg) for the systems consisting of ethyl alcohol-water saturated with copper(II) chloride, strontium chloride, and nickel(II) chloride are presented. Also provided are the solubilities of each of these salts in the liquid binary mixture at the boiling point. Copper(II) chloride and nickel(II) chloride completely break the azeotrope, while strontium chloride moves the azeotrope up to richer compositions in ethyl alcohol. The equilibrium data are correlated by two separate methods, one based on modified mole fractions, and the other on deviations from Raoult s Law. [Pg.91]

Many papers concerning salt effect on vapor-liquid equilibrium have been published. The systems formed by alcohol-water mixtures saturated with various salts have been the most widely studied, with those based on the ethyl alcohol-water binary being of special interest (1-6,8,10,11). However, other alcohol mixtures have also been studied methanol (10,16,17,20,21,22), 1-propanol (10,12,23,24), 2-propanol (12,23,25,26), butanol (27), phenol (28), and ethylene glycol (29,30). Other binary solvents studied have included acetic acid-water (22), propionic acid-water (31), nitric acid-water (32), acetone-methanol (33), ethanol-benzene (27), pyridine-water (25), and dioxane-water (26). [Pg.91]

The salt effects of potassium bromide and a series office symmetrical tetraalkylammonium bromides on vapor-liquid equilibrium at constant pressure in various ethanol-water mixtures were determined. For these systems, the composition of the binary solvent was held constant while the dependence of the equilibrium vapor composition on salt concentration was investigated these studies were done at various fixed compositions of the mixed solvent. Good agreement with the equation of Furter and Johnson was observed for the salts exhibiting either mainly electrostrictive or mainly hydrophobic behavior however, the correlation was unsatisfactory in the case of the one salt (tetraethylammonium bromide) where these two types of solute-solvent interactions were in close competition. The transition from salting out of the ethanol to salting in, observed as the tetraalkylammonium salt series is ascended, was interpreted in terms of the solute-solvent interactions as related to physical properties of the system components, particularly solubilities and surface tensions. [Pg.105]

Maher, P. J., and B. D. Smith, Vapor-liquid equilibrium data for binary systems of chlorobenzene with acetone, acetonitrile, ethyl acetate, ethylbenzene, methanol and 1-pentene , J. Chem. Eng. Data, 24, 363-377 (1979). [Pg.1237]

Measurements of binary vapor-liquid equilibria can be expressed in terms of activity coefficients, and then correlated by the Wilson or other suitable equation. Data on all possible pairs of components can be combined to represent the vapor-liquid behavior of the complete mixture. For exploratory purposes, several rapid experimental techniques are applicable. For example, differential ebulliometry can obtain data for several systems in one laboratory day, from which infinite dilution activity coefficients can be calculated and then used to evaluate the parameters of correlating equations. Chromatography also is a well-developed rapid technique for vapor-liquid equilibrium measurement of extractive distillation systems. The low-boiling solvent is deposited on an inert carrier to serve as the adsorbent. The mathematics is known from which the relative volatility of a pair of substances can be calculated from the effluent trace of the elutriated stream. Some of the literature of these two techniques is cited by Walas (1985, pp. 216-217). [Pg.417]

The same reference (standard) state, f is chosen for the two phases, so that it cancels on both sides of equation 39. The products stffi and y" are referred to as activities. Because equation 39 holds for each component of a liquid—liquid system, it is possible to predict liquid—liquid phase splitting when the activity coefficients of the individual components in a multicomponent system are known. These values can come from vapor—liquid equilibrium experiments or from prediction methods developed for phase-equilibrium problems (4,5,10). Some binary systems can be modeled satisfactorily in this manner, but only rough estimations appear to be possible for multicomponent systems because activity coefficient models are not yet sufficiendy developed in this area. [Pg.238]

Kobayashi, R., Vapor-Liquid Equilibrium in Binary Hydrocarbon-Water Systems, Ph.D. Dissertation, University of Michigan, University Microfilms No. 3521, Ann Arbor, MI (1951). [Pg.254]

Bobbo, S.,Fedele, L., Camporese, R., Stryjek, R. (2000c) Isothermal vapor-liquid equilibrium for the three binary systems 1,1,1,2,3,3-hexafluoropropane with dimethyl ether or propane, and 1,1,1,3,3,3-hexafluoropropane with dimethyl ether. Fluid Phase Equilibria 174, 3-12. [Pg.325]


See other pages where Vapor-liquid equilibrium binary system is mentioned: [Pg.1248]    [Pg.203]    [Pg.240]    [Pg.250]    [Pg.257]    [Pg.1649]    [Pg.1710]    [Pg.9]    [Pg.36]    [Pg.39]    [Pg.40]   
See also in sourсe #XX -- [ Pg.2079 ]




SEARCH



Binary liquid system

Binary systems

Binary systems vaporization

Equilibrium liquid-vapor

Systems equilibrium

Vapor equilibria

Vapor system

Vapor-liquid equilibrium equilibria

Vapor-liquid equilibrium system

Vapor-liquid systems

Vaporizers system

© 2024 chempedia.info