Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mathematical models various

Separation systems include in their mathematical models various vapor-liquid equilibrium (VLE) correlations that are specific to the binary or multicomponent system of interest. Such correlations are usually obtained by fitting VLE data by least squares. The nature of the data can depend on the level of sophistication of the experimental work. In some cases it is only feasible to measure the total pressure of a system as a function of the liquid phase mole fraction (no vapor phase mole fraction data are available). [Pg.451]

These models are not discussed here and the cited papers may be referred to for details of model equations. When macroscale and microscale segregation exist together (bottom left case of Fig. 5.5), none of the cited models are adequate. For such systems, it is necessary to include detailed interaction of fluid mechanics, mixing and reactions in the mathematical model. Various modeling approaches to simulate reactive flow processes with macro- and microscale segregation are discussed briefly below. [Pg.131]

It may not be possible to develop a mathematical model for the fourth problem it not enough is known to characterize the performance of a rod versus the amounts of the various ingredients used in its manufacture. The rods may have to be manufactured and judged by ranking the rods relative to each other, perhaps based partially or totally on opinions. Pattern search methods have been devised to attack problems in this class. [Pg.483]

Once the objective and the constraints have been set, a mathematical model of the process can be subjected to a search strategy to find the optimum. Simple calculus is adequate for some problems, or Lagrange multipliers can be used for constrained extrema. When a Rill plant simulation can be made, various alternatives can be put through the computer. Such an operation is called jlowsheeting. A chapter is devoted to this topic by Edgar and Himmelblau Optimization of Chemical Processes, McGraw-HiU, 1988) where they list a number of commercially available software packages for this purpose, one of the first of which was Flowtran. [Pg.705]

Mathematical Models for Distribution Curves Mathematical models have been developed to fit the various distribution cur ves. It is most unlikely that any frequency distribution cur ve obtained in practice will exactly fit a cur ve plotted from any of these mathematical models. Nevertheless, the approximations are extremely useful, particularly in view of the inherent inaccuracies of practical data. The most common are the binomial, Poisson, and normal, or gaussian, distributions. [Pg.822]

The accuracy of absolute risk results depends on (1) whether all the significant contributors to risk have been analyzed, (2) the realism of the mathematical models used to predict failure characteristics and accident phenomena, and (3) the statistical uncertainty associated with the various input data. The achievable accuracy of absolute risk results is very dependent on the type of hazard being analyzed. In studies where the dominant risk contributors can be calibrated with ample historical data (e.g., the risk of an engine failure causing an airplane crash), the uncertainty can be reduced to a few percent. However, many authors of published studies and other expert practitioners have recognized that uncertainties can be greater than 1 to 2 orders of magnitude in studies whose major contributors are rare, catastrophic events. [Pg.47]

To facilitate the use of methanol synthesis in examples, the UCKRON and VEKRON test problems (Berty et al 1989, Arva and Szeifert 1989) will be applied. In the development of the test problem, methanol synthesis served as an example. The physical properties, thermodynamic conditions, technology and average rate of reaction were taken from the literature of methanol synthesis. For the kinetics, however, an artificial mechanism was created that had a known and rigorous mathematical solution. It was fundamentally important to create a fixed basis of comparison with various approximate mathematical models for kinetics. These were derived by simulated experiments from the test problems with added random error. See Appendix A and B, Berty et al, 1989. [Pg.281]

The Gaussian Plume Model is the most well-known and simplest scheme to estimate atmospheric dispersion. This is a mathematical model which has been formulated on the assumption that horizontal advection is balanced by vertical and transverse turbulent diffusion and terms arising from creation of depletion of species i by various internal sources or sinks. In the wind-oriented coordinate system, the conservation of species mass equation takes the following form ... [Pg.285]

The first step is to define the objectives of the flow model, and to identify those flow aspects that are relevant for the performance of the reactor. Then, the engineer must identify and quantify the various times and space scales involved, as well as the geometry of the system. These actions allow the problem to be represented by a mathematical model. Creating this model accurately is the most crucial task in the flow modeling project. [Pg.813]

Mathews and Rawlings (1998) successfully applied model-based control using solids hold-up and liquid density measurements to control the filtrability of a photochemical product. Togkalidou etal. (2001) report results of a factorial design approach to investigate relative effects of operating conditions on the filtration resistance of slurry produced in a semi-continuous batch crystallizer using various empirical chemometric methods. This method is proposed as an alternative approach to the development of first principle mathematical models of crystallization for application to non-ideal crystals shapes such as needles found in many pharmaceutical crystals. [Pg.269]

The major mechanism of a vapor cloud explosion, the feedback in the interaction of combustion, flow, and turbulence, can be readily found in this mathematical model. The combustion rate, which is primarily determined by the turbulence properties, is a source term in the conservation equation for the fuel-mass fraction. The attendant energy release results in a distribution of internal energy which is described by the equation for conservation of energy. This internal energy distribution is translated into a pressure field which drives the flow field through momentum equations. The flow field acts as source term in the turbulence model, which results in a turbulent-flow structure. Finally, the turbulence properties, together with the composition, determine the rate of combustion. This completes the circle, the feedback in the process of turbulent, premixed combustion in gas explosions. The set of equations has been solved with various numerical methods e.g., SIMPLE (Patankar 1980) SOLA-ICE (Cloutman et al. 1976). [Pg.111]

Once the designer has developed confidence in the analysis techniques pertaining to the various parts of a design concept (whether derived from mathematical models or from physical models), the designer can begin the process of synthesis. Synthesis is basically the combining of the analyses (and any other pertinent information) to... [Pg.377]

Heat transfer in the furnace is mainly by radiation, from the incandescent particles in the flame and from hot radiating gases such as carbon dioxide and water vapor. The detailed theoretical prediction of overall radiation exchange is complicated by a number of factors such as carbon particle and dust distributions, and temperature variations in three-dimensional mixing. This is overcome by the use of simplified mathematical models or empirical relationships in various fields of application. [Pg.347]

Typical approaches for measuring diffusivities in immobilised cell systems include bead methods, diffusion chambers and holographic laser interferometry. These methods can be applied to various support materials, but they are time consuming, making it onerous to measure effective dififusivity (Deff) over a wide range of cell fractions. Owing to the mathematical models involved, the deconvolution of diffusivities can be very sensitive to errors in concentration measurements. There are mathematical correlations developed to predict DeS as... [Pg.223]

In the case of dmg interactions involving metabolic inhibition, little increase in the substrate concentration is expected when the inhibition constant (K ) determined in in vitro studies using human liver samples is larger than the inhibitor concentration in vivo. Various approaches have been adopted using mathematical models in attempts to quantitatively predict in vivo dmg interactions from in vitro data [5]. [Pg.449]

Computers have come to play a significant role in solving complicated mathematical models describing operations. They are frequently used in conjunction with simulation, Monte Carlo, operational gaming, and numerical solution of various mathematical models. [Pg.254]

Any numerical experiment is not a one-time calculation by standard formulas. First and foremost, it is the computation of a number of possibilities for various mathematical models. For instance, it is required to find the optimal conditions for a chemical process, that is, the conditions under which the reaction is completed most rapidly. A solution of this problem depends on a number of parameters (for instance, temperature, pressure, composition of the reacting mixture, etc.). In order to find the optimal workable conditions, it is necessary to carry out computations for different values of those parameters, thereby exhausting all possibilities. Of course, some situations exist in which an algorithm is to be used only several times or even once. [Pg.776]

Ultrasound can thus be used to enhance kinetics, flow, and mass and heat transfer. The overall results are that organic synthetic reactions show increased rate (sometimes even from hours to minutes, up to 25 times faster), and/or increased yield (tens of percentages, sometimes even starting from 0% yield in nonsonicated conditions). In multiphase systems, gas-liquid and solid-liquid mass transfer has been observed to increase by 5- and 20-fold, respectively [35]. Membrane fluxes have been enhanced by up to a factor of 8 [56]. Despite these results, use of acoustics, and ultrasound in particular, in chemical industry is mainly limited to the fields of cleaning and decontamination [55]. One of the main barriers to industrial application of sonochemical processes is control and scale-up of ultrasound concepts into operable processes. Therefore, a better understanding is required of the relation between a cavitation coUapse and chemical reactivity, as weU as a better understanding and reproducibility of the influence of various design and operational parameters on the cavitation process. Also, rehable mathematical models and scale-up procedures need to be developed [35, 54, 55]. [Pg.298]

Mathematical Models. As noted previously, a mathematical model must be fitted to the predicted results shown In each factorial table generated by each scientist. Ideally, each scientist selects and fits an appropriate model based upon theoretical constraints and physical principles. In some cases, however, appropriate models are unknown to the scientists. This Is likely to occur for experiments Involving multifactor, multidisciplinary systems. When this occurs, various standard models have been used to describe the predicted results shown In the factorial tables. For example, for effects associated with lognormal distributions a multiplicative model has been found useful. As a default model, the team statistician can fit a polynomial model using standard least square techniques. Although of limited use for Interpolation or extrapolation, a polynomial model can serve to Identify certain problems Involving the relationships among the factors as Implied by the values shown In the factorial tables. [Pg.76]

A survey of the mathematical models for typical chemical reactors and reactions shows that several hydrodynamic and transfer coefficients (model parameters) must be known to simulate reactor behaviour. These model parameters are listed in Table 5.4-6 (see also Table 5.4-1 in Section 5.4.1). Regions of interfacial surface area for various gas-liquid reactors are shown in Fig. 5.4-15. Many correlations for transfer coefficients have been published in the literature (see the list of books and review papers at the beginning of this section). The coefficients can be evaluated from those correlations within an average accuracy of about 25%. This is usually sufficient for modelling of chemical reactors. Mathematical models of reactors arc often more sensitive to kinetic parameters. Experimental methods and procedures for parameters estimation are discussed in the subsequent section. [Pg.288]

Based on a detailed mathematical model, one can make computer simulations of the behaviour of various reactor types. Optimization of operating conditions and design parameters can be done for each reactor type. Downstream equipment should also be taken into account since the cost of product isolation and purification can heavily influence the final choice of all equipment items. A proper combination of investment and operating costs is used as the... [Pg.381]

Mathematical models of tubular chemical reactor behaviour can be used to predict the dynamic variations in concentration, temperature and flow rate at various locations within the reactor. A complete tubular reactor model would however be extremely complex, involving variations in both radial and axial... [Pg.229]

The classic Barber-Cushman model treats the root surface as a smooth solid cylinder. Yet many experimental studies have shown that root hairs are important for the uptake of some nutrients, e.g., P (25,26). Various mathematical models for root hairs have been used (5,27,28), which all differ slightly in the way in which root hairs are modeled. Most authors conclude that root hairs make a substantial contribution to uptake, particularly for relatively immobile nutrients. [Pg.336]

Computer-aided mathematical modeling is a useful tool to supplement monitoring studies and to evaluate the environmental fate of agrochemicals under various conditions. A simulation procedure with a mathematical model using parameters observed in the monitoring study could be helpful for the interpretation of the data obtained in the study. [Pg.905]

The nature of the mathematical model that describes a physical system may dictate a range of acceptable values for the unknown parameters. Furthermore, repeated computations of the response variables for various values of the parameters and subsequent plotting of the results provides valuable experience to the analyst about the behavior of the model and its dependency on the parameters. As a result of this exercise, we often come up with fairly good initial guesses for the parameters. The only disadvantage of this approach is that it could be time consuming. This counterbalanced by the fact that one learns a lot about the structure and behavior of the model at hand. [Pg.135]

Detailed quantitative analyses of the data allowed the production of a mathematical model, which was able to reproduce all of the characteristics seen in the experiments carried out. Comparing model profiles with the data enabled the diffusion coefficients of the various components and reaction rates to be estimated. It was concluded that oxygen inhibition and latex turbidity present real obstacles to the formation of uniformly cross-linked waterborne coatings in this type of system. This study showed that GARField profiles are sufficiently quantitative to allow comparison with simple models of physical processes. This type of comparison between model and experiment occurs frequently in the analysis of GARField data. [Pg.96]


See other pages where Mathematical models various is mentioned: [Pg.55]    [Pg.55]    [Pg.156]    [Pg.88]    [Pg.441]    [Pg.7]    [Pg.687]    [Pg.330]    [Pg.377]    [Pg.41]    [Pg.102]    [Pg.417]    [Pg.132]    [Pg.777]    [Pg.519]    [Pg.519]    [Pg.532]    [Pg.629]    [Pg.136]    [Pg.268]    [Pg.519]    [Pg.47]    [Pg.793]    [Pg.360]   
See also in sourсe #XX -- [ Pg.137 , Pg.138 ]




SEARCH



© 2024 chempedia.info