Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Batch semibatch

After the mbber latex is produced, it is subjected to further polymerization in the presence of styrene (CgHg) and acrylonitrile (C H N) monomers to produce the ABS latex. This can be done in batch, semibatch, or continuous reactors. The other ingredients required for this polymerization are similar to those required for the mbber latex reaction. [Pg.204]

These mixing systems offer high flexibility because they can be operated in batch, semibatch, or continuous modes. Adequate mixing is a prerequisite for the success of chemical processes in terms of rninirnizing investment and operating costs. In addition, chemical reactions with... [Pg.419]

The aqueous emulsion polymerization can be conducted by a batch, semibatch, or continuous process (Fig. 5). In a simple batch process, all the ingredients are charged to the reactor, the temperature is raised, and the polymerization is mn to completion. In a semibatch process, all ingredients are charged except the monomers. The monomers are then added continuously to maintain a constant pressure. Once the desired soflds level of the latex is reached (typically 20—40% soflds) the monomer stream is halted, excess monomer is recovered and the latex is isolated. In a continuous process (37), feeding of the ingredients and removal of the polymer latex is continuous through a pressure control or rehef valve. [Pg.510]

Operating Modes. The component and mass balances are quite general and apply to any operating mode e.g., batch, semibatch, or steady state. Table 11.2 gives examples for the various modes. [Pg.388]

Nomura and Fujita (12), Dougherty (13-14), and Storti et al. (12). Space does not permit a review of each of these papers. This paper presents the development of a more extensive model in terms of particle formation mechanism, copolymer kinetic mechanism, applicability to intervals I, II and III, and the capability to simulate batch, semibatch, or continuous stirred tank reactors (CSTR). Our aim has been to combine into a single coherent model the best aspects of previous models together with the coagulative nucleation theory of Feeney et al. (8-9) in order to enhance our understanding of... [Pg.361]

On the other hand, very few ncdels for nulticonponent systans have been reported in the literature. Apart from models for binary systems, usually restricted to "zero-one" systans (5) (6), the most detailed model of this type has been proposed by Hamielec et al. (7), with reference to batch, semibatch and continuous emilsion polymerization reactors. Notably, besides the usual kinetic informations (nonomer, conversion, PSD), the model allows for the evaluation of IWD, long and short chain brandling frequencies and gel content. Comparisons between model predictions and experimental data are limited to tulK and solution binary pwlymerization systems. [Pg.380]

The ideal tank reactor is one in which stirring is so efficient that the contents are always uniform in composition and temperature throughout. The simple tank reactor may be operated in a variety of modes batch, semibatch, and continuous flow. These modes are illustrated schematically in Figure 8.1. In the simple batch reactor the fluid elements will all have the same composition, but the composition will be time dependent. The stirred tank reactor may also be... [Pg.247]

Process. Commercial processes manufacturing lalex can he div ided into batch, semibatch, and continuous methods... [Pg.920]

Remark 5 Note also that reactors of various distribution functions can be treated with this approach, on the grounds that different distribution functions are usually approximated via cascades of CSTRs. In this case, we can treat the number of CSTRs as a variable or provide a variety of alternative reactors each featuring different numbers of CSTRs. Kokossis and Floudas (1990), present examples for batch, semibatch reactors and different distribution functions. [Pg.414]

Enzymes are biocatalysts constructed of a folded chain of amino acids. They may be used under mild conditions for specific and selective reactions. While many enzymes have been found to be catalytically active in both aqueous and organic solutions, it was not until quite recently that enzymes were used to catalyze reactions in carbon dioxide when Randolph et al. (1985) performed the enzyme-catalyzed hydrolysis of disodium p-nitrophenol using alkaline phosphatase and Hammond et al. (1985) used polyphenol oxidase to catalyze the oxidation of p-cresol and p-chlorophenol. Since that time, more than 80 papers have been published concerning reactions in this medium. Enzymes can be 10-15 times more active in carbon dioxide than in organic solvents (Mori and Okahata, 1998). Reactions include hydrolysis, esterification, transesterification, and oxidation. Reactor configurations for these reactions were batch, semibatch, and continuous. [Pg.103]

Hammond et al. (1985) Batch/semibatch Oxidation of p-cresol and p-chlorophenol to corresponding o-benzoquinones Polyphenol oxidase... [Pg.104]

Randolph et al. (1988) Batch/semibatch Oxidation of cholesterol Cholesterol oxidases Geioeocysticum chrysocreas and Streptomyces sp. [Pg.104]

Heterogeneously catalyzed hydrogenation reactions can be run in batch, semibatch, or continous reactors. Our catalytic studies, which were carried out in liquid, near-critical, or supercritical C02 and/or propane mixtures, were run continuously in oil-heated (200 °C, 20.0 MPa) or electrically heated flow reactors (400 °C, 40.0 MPa) using supported precious-metal fixed-bed catalysts. The laboratory-scale apparatus for catalytic reactions in supercritical fluids is shown in Figure 14.2. This laboratory-scale apparatus can perform in situ countercurrent extraction prior to the hydrogenation step in order to purify the raw materials employed in our experiments. Typically, the following reaction conditions were used in our supercritical fluid hydrogenation experiments catalyst volume, 2-30 mL total pressure, 2.5-20.0 MPa reactor temperature, 40-190 °C carbon dioxide flow, 50-200 L/h ... [Pg.230]

Fig. 7. Glucose production cost as a function of cellulase purchase price for three process configurations batch, semibatch, and semibatch with additional cellulase. Vertical dashed lines are cellulase purchase prices in 1999 (26.6 /kg) and in 2002 (12.2tf/kg). Fig. 7. Glucose production cost as a function of cellulase purchase price for three process configurations batch, semibatch, and semibatch with additional cellulase. Vertical dashed lines are cellulase purchase prices in 1999 (26.6 /kg) and in 2002 (12.2tf/kg).
There are five primary reactor designs based in theory batch, semibatch, continuous-stirred tank, plug flow, and fluidized bed. The operating expressions for these reactors are derived from material and energy balances, and each represents a specific mode of operation. Selected reactor configurations are presented in Fig. 1. [Pg.463]

In Chapter 3, the analytical method of solving kinetic schemes in a batch system was considered. Generally, industrial realistic schemes are complex and obtaining analytical solutions can be very difficult. Because this is often the case for such systems as isothermal, constant volume batch reactors and semibatch systems, the designer must review an alternative to the analytical technique, namely a numerical method, to obtain a solution. For systems such as the batch, semibatch, and plug flow reactors, sets of simultaneous, first order ordinary differential equations are often necessary to obtain the required solutions. Transient situations often arise in the case of continuous flow stirred tank reactors, and the use of numerical techniques is the most convenient and appropriate method. [Pg.279]

Polymerizable surfactants capable of working as transfer agents include thiosulfonates, thioalkoxylates and methyl methacrylate dimer/trimer surfactants. Thioalkoxylates with 17-90 ethylene oxide units were produced from ethoxylated 11 bromo-undecanol by replacing the bromine with a thiol group via the thiazonium salt route [8]. In the presence of water-soluble azo initiator the thio ended Transurfs (used at a concentration above the CMC) gave monodispersed latex particles in emulsion polymerization of styrene. However, the incorporation of the Transurf remained low, irrespective of the process used for the polymerization (batch, semibatch, seeded). The stability of the lattices when the surfactant and the transfer function were incorporated in the same molecule was better than when they were decoupled. [Pg.211]

Polymer emulsions can be produced by the direct and the inverse emulsion process. The direct emulsion polymerization can be performed in a batch, semibatch and continuous process. [Pg.222]

Conventional mechanically agitated gas-liquid reactors, wherein gas and liquid make contact in batch, semibatch, or continuous mode, are widely used in processes involving chlorination, sulfonation, hydrogenation, selective absorptions in amine solutions, etc. (Doraiswamy and Sharma, 1984). These reactors are popular for laboratory studies because of their simplicity in construction and low cost. As a rule of thumb with noncorrosive liquids, the mechanically agitated reactor is most economical when the overall reaction rate is five times greater than the mass transfer rate in a bubble column. If a... [Pg.10]

Finally, some remarks on the operation of mechanically agitated gas-liquid reactors are worth mentioning. The mode of operation (i.e., batch, semibatch, continuous, periodic, etc.) depends on the specific need of the system. For example, the level of liquid-phase backmixing can be controlled to any desired level by operating the gas-liquid reactor in a periodic or semibatch manner. This provides an alternative to the tanks in series or plug flow with recycle system and provides a potential method of increasing the yield of the desired intermediate in complex reaction schemes. In some cases of industrial importance, the mode of operation needs to be such that the concentration of the solute gas (such as Cl2, H2S, etc.) as the reactor outlet is kept at a specific value. As shown by Joshi et al. (1982), this can be achieved by a number of different operational and control strategies. [Pg.32]

Many of these difficulties can be overcome by choosing an appropriate configuration of the photoreactor system. One such a system is the mechanically agitated cylindrical reactor with parabolic reflector. In this type of reactor, the reaction system is isolated from the radiation source (which could also simplify the solution of the well-known problem of wall deposits, generally more severe at the radiation entrance wall). The reactor system uses a cylindrical reactor irradiated from the bottom by a tubular source located at the focal axis of a cylindrical reflector of parabolic cross-section (Fig. 40). Since the cylindrical reactor may be a perfectly stirred tank reactor, this device is especially required. This type of reactor is applicable for both laboratory-and commercial-scale work and can be used in batch, semibatch, or continuous operations. Problems of corrosion and sealing can be easily handled in this system. [Pg.164]

The polymerization process can be carried out as a batch, semibatch, or continuous process. This offers the possibility to optimize reaction conditions and obtain microgels with desired properties. [Pg.8]

We will now look at the type of reactor system (batch, semibatch or CSTR) from the point of view of miniemulsion copolymerization. [Pg.197]

From this general mole balance equation we can develop the design equations for the various types of industrial reactors batch, semibatch, and continuous-flow. Upon, evaluation of these equations we cau determine the time (batch) or reactor volume (continuous-flow) necessary to convert a specified amount of the reactants to products. [Pg.21]

The aim of the preceding discussion on commercial reactors is to give a more detailed picture of each of the major types of industrial reactors batch, semibatch, CSTR, tubular, fixed-bed (packed-bed), and iiuidized-bed. Many variations aird modifications of these commercial reactors are in current use for further elaboration, refer to the detailed discussion of industrial reactors given by Walas. ... [Pg.29]

Batch, semibatch, or continuous-flow operation can be simulated. The continuous phase is assumed well mixed. Particle movement was either random or followed the flow direction of the sum of the local average fluid velocity and the particle gross terminal velocity. The probability of droplet breakup is assigned based on droplet size. Binary breakage was assumed to form two randomly sized particles whose masses equal the parent drop. The probability of coalescence exists when two drops enter the same grid location. Particles are added and removed to simulate flow. [Pg.255]

Mechanically agitated batch/semibatch with pH control and nutrients or other species either fed at the start or added continuously based on a recipe or protocol. [Pg.35]


See other pages where Batch semibatch is mentioned: [Pg.26]    [Pg.1143]    [Pg.2046]    [Pg.57]    [Pg.302]    [Pg.196]    [Pg.594]    [Pg.53]    [Pg.56]    [Pg.966]    [Pg.1804]    [Pg.365]    [Pg.365]    [Pg.370]    [Pg.83]    [Pg.992]    [Pg.1312]    [Pg.2143]   


SEARCH



Batch and Semibatch Reactors

Cycles batch/semibatch reactors

Fed-Batch or Semibatch Mode

Mixing Issues Associated with Batch, Semibatch, and Continuous Operation

Semibatch reactor semi-batch

© 2024 chempedia.info