Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amphoteric metal

The more metallic elements, indium and thallium, do not react in spite of the fact that In(OH)3 is amphoteric. [Pg.144]

In this group the outer quantum level has a full s level and two electrons in the corresponding p level. As the size of the atom increases the ionisation energy changes (see Table 8.1) and these changes are reflected in the gradual change from a typical non-metallic element, carbon, to the weakly metallic element, lead. Hence the oxides of carbon and silicon are acidic whilst those of tin and lead are amphoteric. [Pg.160]

Nitrogen is unusual in forming so many oxides. The acidity of the Group V oxides falls from phosphorus, whose oxides are acidic, through arsenic and antimony whose oxides are amphoteric, to the basic oxide ofbismuth. This change is in accordance with the change from the non-metallic element, phosphorus, to the essentially metallic element, bismuth. The +5 oxides are found, in each case, to be more acidic than the corresponding + 3 oxides. [Pg.228]

Notice that the acidic character is associated with the ability of aluminium to increase its covalency from three in the oxide to six in the hydroxoaluminate ion, [Al(OH)g] the same abihty to increase covalency is found in other metals whose oxides are amphoteric, for example... [Pg.286]

Most metals will precipitate as the hydroxide in the presence of concentrated NaOH. Metals forming amphoteric hydroxides, however, remain soluble in concentrated NaOH due to the formation of higher-order hydroxo-complexes. For example, Zn and AP will not precipitate in concentrated NaOH due to the formation of Zn(OH)3 and Al(OH)4. The solubility of AP in concentrated NaOH is used to isolate aluminum from impure bauxite, an ore of AI2O3. The ore is powdered and placed in a solution of concentrated NaOH where the AI2O3 dissolves to form A1(0H)4T Other oxides that may be present in the ore, such as Fe203 and Si02, remain insoluble. After filtering, the filtrate is acidified to recover the aluminum as a precipitate of Al(OH)3. [Pg.211]

Table 1 Hsts many of acetamide s important physical properties. Acetamide, CH2CONH2, dissolves easily ia water, exhibiting amphoteric behavior. It is slow to hydroly2e unless an acid or base is present. The autodissociation constant is about 3.2 x 10 at 94°C. It combines with acids, eg, HBr, HCl, HNO, to form soHd complexes. The chemistry of metal salts ia acetamide melts has been researched with a view to developing electroplating methods. The hterature of acetamide melts and complexes, their electrochemistry and spectroscopy, has been critically reviewed (9). Table 1 Hsts many of acetamide s important physical properties. Acetamide, CH2CONH2, dissolves easily ia water, exhibiting amphoteric behavior. It is slow to hydroly2e unless an acid or base is present. The autodissociation constant is about 3.2 x 10 at 94°C. It combines with acids, eg, HBr, HCl, HNO, to form soHd complexes. The chemistry of metal salts ia acetamide melts has been researched with a view to developing electroplating methods. The hterature of acetamide melts and complexes, their electrochemistry and spectroscopy, has been critically reviewed (9).
Lead Monoxide. Lead monoxide (litharge), PbO, occurs as a reddish alpha form, which is stable up to 489°C where it transforms to a yellow beta form (massicot). The latter is stable at high temperatures. The solubihty of a-PbO ia water is 0.0504 g/L at 25°C the solubihty of the p-PbO is 0.1065 g/L at 25°C (40). Lead monoxide is amphoteric and dissolves ia both acids and alkahes. In alkahes, it forms the plumbite ion PbO - The monoxide is produced commercially by the reaction of molten lead with air or oxygen ia a furnace. Black or gray oxide is manufactured by the Barton process, by the oxidation of atomized molten lead ia air, as well as by the ball mill process, ia which metallic lead balls of high purity are tumbled ia the mill to form partially oxidized lead particles. [Pg.69]

Nloha.tes, Niobic acid is amphoteric and can act as an acid radical in several series of compounds, which are referred to as niobates. Niobic acid is soluble in solutions of the hydroxides of alkaH metals to form niobates. Fusion of the anhydrous pentoxide with alkaH metal hydroxides or carbonates also yields niobates. Most niobates are insoluble in water with the exception of those alkaH metal niobates having a base-to-acid ratio greater than one. The most weU-known water-soluble niobates are the 4 3 ad the 7 6 salts (base acid), having empirical formulas MgNb O c, (aq) and M24Nb2202y (aq), respectively. The hexaniobate is hydrolyzed in aqueous solution according to the pH-dependent reversible equiHbria (130), when the pH is ca 9. [Pg.28]

Berzehus (19) further appHed and amplified the nomenclature introduced by Guyton de Morveau and Lavoisier. It was he who divided the elements into metalloids (nonmetals) and metals according to their electrochemical character, and the compounds of oxygen with positive elements (metals) into suboxides, oxides, and peroxides. His division of the acids according to degree of oxidation has been Httie altered. He introduced the terms anhydride and amphoteric and designated the chlorides in a manner similar to that used for the oxides. [Pg.115]

Tlie amphoteric behavior of aluminum hydroxide, wliich dissolves readily in strong acids and bases, is shown in Figure 4. In the pH range of 4 to 9, a small change in pH towards the neutral value causes rapid and voluminous precipitation of colloidal hydroxide wliich readily fomis a gel. Gels are also fomied by the hydrolysis of organoaluminum compounds such as aluminum alkoxides (see Alkoxides, metal). [Pg.169]

Physical and ionic adsorption may be either monolayer or multilayer (12). Capillary stmctures in which the diameters of the capillaries are small, ie, one to two molecular diameters, exhibit a marked hysteresis effect on desorption. Sorbed surfactant solutes do not necessarily cover ah. of a sohd iaterface and their presence does not preclude adsorption of solvent molecules. The strength of surfactant sorption generally foUows the order cationic > anionic > nonionic. Surfaces to which this rule apphes include metals, glass, plastics, textiles (13), paper, and many minerals. The pH is an important modifying factor in the adsorption of all ionic surfactants but especially for amphoteric surfactants which are least soluble at their isoelectric point. The speed and degree of adsorption are increased by the presence of dissolved inorganic salts in surfactant solutions (14). [Pg.236]

Although tellurium resembles sulfur and selenium chemically, it is more basic, more metallic, and more strongly amphoteric. Its behavior as an anion or a cation depends on the medium, eg ... [Pg.384]

The incorporation of metal salts of amphoteric surface active agents (Mostat Series) as internal antistatic agents in polypropylene fibers has been reported (95). Metal salts of alanine, amidoamine, and imida2oiine-type amphoteric surface-active agents show excellent performance as internal antistatic agents and also improve the dyeing abiUty of the fibers with acid dyes. [Pg.295]

BeryUium reacts readUy with sulfuric, hydrochloric, and hydrofluoric acids. DUute nitric acid attacks the metal slowly, whereas concentrated nitric acid has Httle effect. Hot concentrated alkaUes give hydrogen and the amphoteric beryUium hydroxide [13327-32-7] Be(OH)2. Unlike the aluminates, the beryUates are hydrolyzed at the boU. [Pg.66]

Cadmium is rapidly oxidized by hot dilute nitric acid with the simultaneous generation of various oxides of nitrogen. Unlike the ziac ion, the cadmium ion is not markedly amphoteric, and therefore cadmium hydroxide [21041-95-2] Cd(OH)2, is virtually iasoluble ia alkaline media. However, the cadmium ion forms stable complexes with ammonia as well as with cyanide and haUde ions. The metal is not attacked by aqueous solutions of alkaU hydroxide. [Pg.385]

Phenols. Phenols are unreactive toward chloroformates at room temperature and at elevated temperatures the yields of carbonates are relatively poor (< 10%) in the absence of catalysis. Many catalysts have been claimed in the patent Hterature that lead to high yields of carbonates from phenol and chloroformates. The use of catalyst is even more essential in the reaction of phenols and aryl chloroformates. Among the catalysts claimed are amphoteric metals or thek haUdes (16), magnesium haUdes (17), magnesium or manganese (18), secondary or tertiary amines such as imidazole (19), pyridine, quinoline, picoline (20—22), heterocycHc basic compounds (23) and carbonamides, thiocarbonamides, phosphoroamides, and sulfonamides (24). [Pg.39]

Acid-soluble metals such as iron have a relationship as shown in Fig. 28-2 7, In the middle pH range ( 4 to 10), the corrosion rate is controlled by the rate of transport of oxidizer (usually dissolved O9) to the metal surface. Iron is weakly amphoteric. At very high temperatures such as those encountered in boilers, the corrosion rate increases with increasing basicity, as shown by the dashed line. [Pg.2421]

Amphoteric met s such as aluminum and zinc have a relationship as shown in Fig. 28>-2b. These metals dissolve rapidly in either acidic or basic solutions. [Pg.2421]

FIG. 28-2 Effect of pH on the corrosion rate, a) Iron, (h) Amphoteric metals (aluminum, zinc), (c) Noble metals. [Pg.2422]

Pitting is also promoted by low pH. Thus, acidic deposits contribute to attack on stainless steels. Amphoteric alloys such as aluminum are harmed by both acidic and alkaline deposits (Fig. 4.4). Other passive metals (those that form protective corrosion product layers spontaneously) are similarly affected. [Pg.69]

The most harmful deposits are those that are water permeable. Truly water-impermeable material is protective, since without water contacting metal surfaces corrosion cannot occur. Innately acidic or alkaline deposits are troublesome on amphoteric alloys (those attacked at high and low pH—e.g., aluminum and zinc). [Pg.71]

Certain alloys frequently used in cooling water environments, notably aluminum and zinc, can be attacked vigorously at high pH. These metals are also significantly corroded at low pH and thus are said to be amphoteric. A plot of the corrosion behavior of aluminum as a function of pH when exposed to various compounds is shown in Fig. 8.1. The influence of various ions is often more important than solution pH in determining corrosion on aluminum. [Pg.185]

The primary corrosion product PbHj is unstable and decomposes in a subsequent reaction into lead powder and hydrogen gas. Figures 2-11 and 2-12 are typical examples of cathodic corrosion of amphoteric and hydride-forming metals. [Pg.59]

The alkali metal hydroxides are also readily absorb CO2 and H2S to form carbonates (or hydrogencarbonates) and sulfides (or hydrogen-sulfides), and are extensively used to remove mercaptans from petroleum products. Amphoteric oxides such as those of Al, Zn, Sn and Pb react with MOH to form aluminates, zincates, stannates and plumbates, and even SiC>2 (and silicate glasses) are attacked. [Pg.87]

The data given in Tables 1.9 and 1.10 have been based on the assumption that metal cations are the sole species formed, but at higher pH values oxides, hydrated oxides or hydroxides may be formed, and the relevant half reactions will be of the form shown in equations 2(a) and 2(b) (Table 1.7). In these circumstances the a + will be governed by the solubility product of the solid compound and the pH of the solution. At higher pH values the solid compound may become unstable with respect to metal anions (equations 3(a) and 3(b), Table 1.7), and metals like aluminium, zinc, tin and lead, which form amphoteric oxides, corrode in alkaline solutions. It is evident, therefore, that the equilibrium between a metal and an aqueous solution is far more complex than that illustrated in Tables 1.9 and 1.10. Nevertheless, as will be discussed subsequently, a similar thermodynamic approach is possible. [Pg.64]


See other pages where Amphoteric metal is mentioned: [Pg.12]    [Pg.293]    [Pg.259]    [Pg.285]    [Pg.62]    [Pg.159]    [Pg.163]    [Pg.508]    [Pg.256]    [Pg.390]    [Pg.57]    [Pg.421]    [Pg.296]    [Pg.279]    [Pg.393]    [Pg.54]    [Pg.71]    [Pg.140]    [Pg.112]    [Pg.226]    [Pg.424]    [Pg.552]    [Pg.553]    [Pg.981]    [Pg.1181]   
See also in sourсe #XX -- [ Pg.405 ]




SEARCH



Alkaline earth metal amphoterism

Alkaline earth metal hydroxides amphoterism

Amphoteric

Amphoteric behaviour of metal oxides

Amphoteric substances metal hydroxide solubility

Amphotericity

Amphoterics

Amphoterism

Corrosion amphoteric metals

Metal cations amphoteric

Metal hydroxides amphoteric

The Solubility of Amphoteric Metal Hydroxides

© 2024 chempedia.info