Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Barium, activated

Mercerized sample absorbs barium hydroxide (alkali) to a greater degree than sodium hydroxide and from practical point of view, barium hydroxide is more easy to estimate. The ratio of uptake for this reagent has been referred to barium activity number. [Pg.466]

For exact estimation, correction should be made for the moisture regain of the sample. Barium activity number of unmercerized cotton is considered as 100 and semi-mercerized cotton ranges between 115 to 130 and that for completely mercerized cotton is about 155. [Pg.467]

In the mercerization process, cotton fabrics are usually treated with 20% NaOH solution under tension. Its purpose is to enhance the fabric s characteristics such as dye affinity, dimensional stability, tensile strength, and lustre [8,9]. The process must be controlled to ensure fabric quality. Dye shade variation is the most common quality problem related to mercerized fabrics. The conventional method for determining the degree of mercerization, barium activity number (BAN), is laborious and requires 6 h before a result is obtained, which makes the test unsuitable for process control. Determining the BAN has been the only accepted method for measuring the degree of mercerization. The BAN of mercerized fabric is determined by boiling the samples of mercerized and unmercerized fabrics in... [Pg.490]

Draw Lewis electron dot diagrams for the hydrides of bromine and barium. Actively using your diagrams and a table of elecronegativities (see Figure 9.9), determine the oxidation state of the hydrogen in each case. Provide a name for each hydride. [Pg.278]

Reactions on natural rubber or cis-l,4-polyisoprene, in the presence of various OA catalysts such as c -camphorsulfonic acid, percamphoric acid or sodium or barium active-isoamyl-alcoholate were reported by Minoura [189]. Optically active polymers, after hydrolysis of the optically active group, were only obtained with barium alcoholate. The rotatory powers are very small, even for the best reported value of the addition (20%). With other catalysts, there was no asymmetric induction. The mechanism producing the active adduct polymer was thought by the author to be as follows (Scheme LXXI) ... [Pg.69]

Stabilization Mechanism. Zinc and cadmium salts react with defect sites on PVC to displace the labHe chloride atoms (32). This reaction ultimately leads to the formation of the respective chloride salts which can be very damaging to the polymer. The role of the calcium and/or barium carboxylate is to react with the newly formed zinc—chlorine or cadmium—chlorine bonds by exchanging ligands (33). In effect, this regenerates the active zinc or cadmium stabilizer and delays the formation of significant concentrations of strong Lewis acids. [Pg.549]

Authigenic barium sulfate or barite [13462-86-7] is found in relatively high concentrations in sediments covering active diverging oceanic plate boundaries. It occurs as rounded masses containing up to 75% BaSO or as a dispersed constituent of the sediment. Its origins are uncertain, but it is likely that it is associated with hydrothermal actions. [Pg.287]

The commercial product is a dull yeUow powder containing about 90% Ba02 and about 8.5% active oxygen the remainder is mainly barium carbonate and barium hydroxide. The principal use is in pyrotechnics, but there are also small uses in the curing of polysulftde mbbers and in the production of certain titanium—aluminum alloys. [Pg.92]

Magnesium reacts slowly at lower temperatures to give the amide, as do all active metals this reaction is catalyzed by transition metal ions. Aluminum nitride [24304-00-5] AIN, barium nitride [12047-79-9] Ba2N2, calcium nitride [12013-82-0] Ca2N2, strontium nitride [12033-82-8], Sr2N2, and titanium nitride [25583-20-4], TiN, may be formed by heating the corresponding amides. [Pg.338]

Paste Mixing. The active materials for both positive and negative plates are made from the identical base materials. Lead oxide, fibers, water, and a dilute solution of sulfuric acid are combined in an agitated batch mixer or reactor to form a pastelike mixture of lead sulfates, the normal, tribasic, and tetrabasic sulfates, plus PbO, water, and free lead. The positive and negative pastes differ only in additives to the base mixture. Organic expanders, barium sulfate [7727-43-7] BaSO carbon, and occasionally mineral oil are added to the negative paste. Red lead [1314-41 -6] or minium, Pb O, is sometimes added to the positive mix. The paste for both electrodes is characterized by cube weight or density, penetration, and raw plate density. [Pg.576]

Hydrogenation. Hydrogenation is one of the oldest and most widely used appHcations for supported catalysts, and much has been written in this field (55—57). Metals useflil in hydrogenation include cobalt, copper, nickel, palladium, platinum, rhenium, rhodium, mthenium, and silver, and there are numerous catalysts available for various specific appHcations. Most hydrogenation catalysts rely on extremely fine dispersions of the active metal on activated carbon, alumina, siHca-alumina, 2eoHtes, kieselguhr, or inert salts, such as barium sulfate. [Pg.199]

The catalyst commonly used in this method is 5 wt % palladium supported on barium sulfate inhibited with quinoline—sulfur, thiourea, or thiophene to prevent reduction of the product aldehyde. A procedure is found in the Hterature (57). Suitable solvents are toluene, benzene, and xylene used under reflux conditions. Interestingly, it is now thought that Rosenmund s method (59) originally was successful because of the presence of sulfur compounds in the xylene used, since the need for an inhibitor to reduce catalyst activity was not described until three years later (60). [Pg.200]

For more selective hydrogenations, supported 5—10 wt % palladium on activated carbon is preferred for reductions in which ring hydrogenation is not wanted. Mild conditions, a neutral solvent, and a stoichiometric amount of hydrogen are used to avoid ring hydrogenation. There are also appHcations for 35—40 wt % cobalt on kieselguhr, copper chromite (nonpromoted or promoted with barium), 5—10 wt % platinum on activated carbon, platinum (IV) oxide (Adams catalyst), and rhenium heptasulfide. Alcohol yields can sometimes be increased by the use of nonpolar (nonacidic) solvents and small amounts of bases, such as tertiary amines, which act as catalyst inhibitors. [Pg.200]

This reaction is favored by moderate temperatures (100—150°C), low pressures, and acidic solvents. High activity catalysts such as 5—10 wt % palladium on activated carbon or barium sulfate, high activity Raney nickel, or copper chromite (nonpromoted or promoted with barium) can be used. Palladium catalysts are recommended for the reduction of aromatic aldehydes, such as that of benzaldehyde to toluene. [Pg.200]

Since World War 11, the U.S. space program and the military have used small amounts of insoluble chromates, largely barium and calcium chromates, as activators and depolarizers in fused-salt batteries (214,244). The National Aeronautics and Space Administration (NASA) has also used chromium (111) chloride as an electrolyte for redox energy storage cells (245). [Pg.149]

A.uxilia driers do not show catalytic activity themselves, but appear to enhance the activity of the active drier metals. It has been suggested that the auxihary metals improve the solubiUty of the active drier metal, can alter the redox potential of the metal, or function through the formation of complexes with the primary drier. Auxihary driers include barium, zirconium, calcium, bismuth, zinc, potassium, strontium, andhthium. [Pg.221]

Silver alone on a support does not give rise to a good catalyst (150). However, addition of minor amounts of promoter enhance the activity and the selectivity of the catalyst, and improve its long-term stabiHty. Excess addition lowers the catalyst performance (151,152). Promoter formulations have been studied extensively in the chemical industry. The most commonly used promoters are alkaline-earth metals, such as calcium or barium, and alkaH metals such as cesium, mbidium, or potassium (153). Using these metals in conjunction with various counter anions, selectivities as high as 82—87% were reported. Precise information on commercial catalyst promoter formulations is proprietary (154—156). [Pg.458]

Many investigations are reported on azides of barium, calcium, strontium, lead, copper, and silver in the range 100 to 200°C (212 to 392°F). Time exponents were 6 to 8 and activation energies of 30 to 50 kcal/g mol (54,000 to 90,000 Btu/lb mol) or so. Some difficulties with reproducibility were encountered with these hazardous materials. [Pg.2122]

The viscosity of liquid silicates such as drose containing barium oxide and silica show a rapid fall between pure silica and 20 mole per cent of metal oxide of nearly an order of magnitude at 2000 K, followed by a slower decrease as more metal oxide is added. The viscosity then decreases by a factor of two between 20 and 40 mole per cent. The activation energy for viscous flow decreases from 560 kJ in pure silica to 160-180kJmol as the network is broken up by metal oxide addition. The introduction of CaFa into a silicate melt reduces the viscosity markedly, typically by about a factor of drree. There is a rapid increase in the thermal expansivity coefficient as the network is dispersed, from practically zero in solid silica to around 40 cm moP in a typical soda-lime glass. [Pg.309]

Graded Adsorbents and Solvents. Materials used in columns for adsorption chromatography are grouped in Table 12 in an approximate order of effectiveness. Other adsorbents sometimes used include barium carbonate, calcium sulfate, calcium phosphate, charcoal (usually mixed with Kieselguhr or other form of diatomaceous earth, for example, the filter aid Celite) and cellulose. The alumina can be prepared in several grades of activity (see below). [Pg.19]

Hardness Calcium, magnesium, barium and strontium salts expressed as CaCOa Chief source of scale in heat exchange equipment, boilers, pipe lines, etc. forms curds with soap interferes wKh dyeing, etc. Softening, distillation, internal boiler water treatment, surface active agents, reverse osmosis, electrodialysis... [Pg.146]


See other pages where Barium, activated is mentioned: [Pg.72]    [Pg.466]    [Pg.466]    [Pg.25]    [Pg.25]    [Pg.60]    [Pg.72]    [Pg.466]    [Pg.466]    [Pg.25]    [Pg.25]    [Pg.60]    [Pg.277]    [Pg.159]    [Pg.872]    [Pg.446]    [Pg.446]    [Pg.545]    [Pg.288]    [Pg.291]    [Pg.292]    [Pg.443]    [Pg.312]    [Pg.509]    [Pg.23]    [Pg.557]    [Pg.557]    [Pg.503]    [Pg.1540]    [Pg.79]   
See also in sourсe #XX -- [ Pg.25 ]

See also in sourсe #XX -- [ Pg.25 , Pg.26 ]




SEARCH



Barium activity number

Barium titanate (BaTiO activity

© 2024 chempedia.info