Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers optically active

Dehydration or Chemical Stabilization. The removal of surface silanol (Si—OH) bonds from the pore network results in a chemically stable ultraporous soHd (step F, Fig. 1). Porous gel—siHca made in this manner by method 3 is optically transparent, having both interconnected porosity and sufficient strength to be used as unique optical components when impregnated with optically active polymers, such as fiuors, wavelength shifters, dyes, or nonlinear polymers (3,23). [Pg.251]

The most important reaction with Lewis acids such as boron trifluoride etherate is polymerization (Scheme 30) (72MI50601). Other Lewis acids have been used SnCL, Bu 2A1C1, Bu sAl, Et2Zn, SO3, PFs, TiCU, AICI3, Pd(II) and Pt(II) salts. Trialkylaluminum, dialkylzinc and other alkyl metal initiators may partially hydrolyze to catalyze the polymerization by an anionic mechanism rather than the cationic one illustrated in Scheme 30. Cyclic dimers and trimers are often products of cationic polymerization reactions, and desulfurization of the monomer may occur. Polymerization of optically active thiiranes yields optically active polymers (75MI50600). [Pg.146]

Optically active polymers are potentially very useful in areas such as asymmetric catalysis, nonlinear optics, polarized photo and electroluminescence, and enantioselective separation and sensing.26 Transition metal coupling polymerization has also been applied to the synthesis of these polymers.27 For example, from the Ni(II)-catalyzed polymerization, a regioregular head-to-tail polymer 32 was obtained (Scheme 9.17).28 This polymer is optically active because of the optically active chiral side chains. [Pg.473]

Transition metal coupling polymerization has also been used to synthesize optically active polymers with stable main-chain chirality such as polymers 33, 34, 35, and 36 by using optically active monomers.29-31 These polymers are useful for chiral separation and asymmetric catalysis. For example, polymers 33 and 34 have been used as polymeric chiral catalysts for asymmetric catalysis. Due... [Pg.473]

Conjugated polymers, including optically active polymers and dendronized polymers that are very useful in electrical and optical fields and asymmetric catalysis, will continue to attract interest from chemists and materials scientists. It is well anticipated that more and more polymers with interesting structures and properties will be synthesized from the transition metal coupling strategy. [Pg.477]

Incorporation of chiral units into polymers generates optically active polymers.27 Two types of optically active polymers could be obtained according to where the chiral units reside optically active polymers with chirality derived from chiral side chains and optically active polymers with chirality derived from tire chiral main chain. The circular dichroism (CD) measurement of 32, an optically active polymer with chiral side chains, showed that the chiral substituents have induced main-chain chirality. The induced main-chain chirality disappeared at higher temperature and appeared upon cooling. This type of chiral conjugated polymer is potentially useful in reversing optical recording28 ... [Pg.479]

Optical rotation and circular dichroism have been used for die characterization of optically active polymers. They have been used to determine whether polymers are optically active and whether a secondary structure such as a helix exists. [Pg.490]

Optically active polymers, 473, 479-480 synthesis of, 509 Optically active poly(phenylene-ethynylene), synthesis of,... [Pg.590]

Okamoto and his colleagues60) described the interesting polymerization of tri-phenylmethyl methacrylate. The bulkiness of this group affects the reactivity and the mode of placement of this monomer. The anionic polymerization yields a highly isotactic polymer, whether the reaction proceeds in toluene or in THF. In fact, even radical polymerization of this monomer yields polymers of relatively high isotacticity. Anionic polymerization of triphenylmethyl methacrylate initiated by optically active initiators e.g. PhN(CH2Ph)Li, or the sparteine-BuLi complex, produces an optically active polymer 60). Its optical activity is attributed to the chirality of the helix structure maintained in solution. [Pg.111]

In addition to solvent uses, esters of lactic acid can be used to recover pure lactic acid via hydrolysis, which in-tum is used to make optically active dilactide and subsequently polylactic acid used for drag delivery system.5 This method of recovery for certain lactic acid applications is critical in synthesis of medicinal grade polymer because only optically active polymers with low Tg are useful for drug delivery systems. Lactic acid esters themselves can also be directly converted into polymers, (Figure 1), although the commercial route proceeds via ring-opening polymerization of dilactide. [Pg.374]

When a chiral ansa-type zirconocene/MAO system was used as the catalyst precursor for polymerization of 1,5-hexadiene, an main-chain optically active polymer (68% trans rings) was obtained84-86. The enantioselectivity for this cyclopolymerization can be explained by the fact that the same prochiral face of the olefins was selected by the chiral zirconium center (Eq. 12) [209-211]. Asymmetric hydrogenation, as well as C-C bond formation catalyzed by chiral ansa-metallocene 144, has recently been developed to achieve high enantioselectivity88-90. This parallels to the high stereoselectivity in the polymerization. [Pg.34]

Optically Active Polymers with Chiral Recognition Ability... [Pg.157]

OPTICALLY ACTIVE POLYMERS WITH CHIRAL RECOGNITION ABILITY... [Pg.159]

Both synthetic and naturally occurring polymers have been used as CSPs. Figure 3.2 shows typical CSPs prepared from optically active polymers (1-18) 1-15 are totally synthetic polymers, including vinyl polymers (1-7), polyamides (8-12), polyurethanes (13), polyacetylene (14), and polysaccharide analogue (15). The CSPs 16-18 are based on natural polymers, proteins (16), and polysaccharides (17, 18). [Pg.159]

In this chapter, the chiral recognition by optically active polymers has been reviewed in connection with polymer structures. Most of the polymers showing... [Pg.201]

Among optically active polymers, polysaccharide derivatives are particularly valuable. Polysaccharides such as cellulose and amylose are the most readily available optically active polymers and have stereoregular sequences. Although the chiral recognition abilities of native polysaccharides are not remarkable, they can be readily converted to the esters and carbamates with high chiral recognition abilities. The chiral recognition mechanism of these derivatives has been clarified to some extent. [Pg.202]


See other pages where Polymers optically active is mentioned: [Pg.157]    [Pg.59]    [Pg.168]    [Pg.480]    [Pg.480]    [Pg.509]    [Pg.73]    [Pg.461]    [Pg.111]    [Pg.158]    [Pg.158]    [Pg.159]    [Pg.165]    [Pg.168]   
See also in sourсe #XX -- [ Pg.65 ]

See also in sourсe #XX -- [ Pg.259 ]

See also in sourсe #XX -- [ Pg.401 , Pg.402 , Pg.403 , Pg.404 , Pg.405 , Pg.406 , Pg.407 ]

See also in sourсe #XX -- [ Pg.149 , Pg.155 ]

See also in sourсe #XX -- [ Pg.421 ]




SEARCH



Active polymers

Chiral molecules optically active polymers

Chiral stationary phases optically active polymers

Electrically active polymers nonlinear optics

Electrically active polymers optical properties

Helical conformation optically active polymers

Nonlinear optically active polymer

Olefins optically active polymers

Optical activity in polymers

Optical activity natural polymer derivatives

Optical activity synthetic polymers

Optical activity vinyl polymers

Optical polymers

Optically Active Dendronized Polymers

Optically active carbazole polymers

Optically active natural polymers

Optically active polymers naturally occurring

Optically active polymers stereoisomerism

Optically active polymers substituted

Polymer Stereochemistry and Optical Activity

Polymer activities

Polymers activator

Polymers, activation

Polymers, optically active poly

Synthesis of Optically Active Polymers

Synthetic polymers optically active compounds

Vinyl polymers helical conformation, optical activity

© 2024 chempedia.info