Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adducts activation

As in the case of 2-substituted pyridine adducts, activation of an aromatic C—H bond is observed when the adducts of 6-thbipy and of 6-Bnbipy are heated under reflux in aqueous media. A cyclic dimer (1) with bridging N,C ligands is obtained in the first case [24], while cyclometallated derivatives [Au(N, N,C)C1] (2) are formed in... [Pg.49]

Pathways for the genotoxicity PCP are outlined in Scheme 15. In the presence of cytochrome P450, PCP undergoes oxidative dechlorination to form tetrachloroben-zoquinone (TCBQ) that reacts with dG and other DNA bases to form benzetheno-type adducts. ° ° Activation by enzymes with peroxidase activities furnishes the... [Pg.209]

Table (2) PPG repairing DNA adducts activity and mechanism of action. Table (2) PPG repairing DNA adducts activity and mechanism of action.
Diels-Alder adducts, activation of C-hydrogen by formation of — 19, 766... [Pg.229]

Comprehensive theoretical calculations have been reported for the ground and excited states of fluorobromocarbene, which is an adduct active in the stratospheric ozone layer depletion. This study correlated nicely with the previous experimental and theoretical results and revealed that the different states are interacting strongly and that the electronic states exhibit complex dynamics. [Pg.173]

Anthony, RA, Laboda, J.C., and Costlow, M.E., Psoralen-fatty acid adducts activate melanocyte protein kinase C a proposed mechanism for melanogenesis induced by 8-methoxypsoralen and ultraviolet A hght, Photodermatol. Photoimmunol. Photomed., 13, 9, 1997. [Pg.2766]

Compounds containing a double or triple bond, usually activated by additional unsaturation (carbonyl, cyano, nitro, phenyl, etc.) In the ap position, add to the I 4-positions of a conjugated (buta-1 3-diene) system with the formation of a ax-membered ring. The ethylenic or acetylenic compound is known as the dieTwphile and the second reactant as the diene the product is the adduct. The addition is generally termed the Diels-Alder reaction or the diene synthesis. The product in the case of an ethylenic dienophile is a cyctohexene and in that of an acetylenic dienophile is a cyctohexa-1 4-diene. The active unsaturated portion of the dienophile, or that of the diene, or those in both, may be involved in rings the adduct is then polycyclic. [Pg.941]

Figure 1.2. Endo and exo pathway for the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone. As was first noticed by Berson, the polarity of the endo activated complex exceeds that of the exo counterpart due to alignment of the dipole moments of the diene and the dienophile K The symmetry-allowed secondary orbital interaction that is only possible in the endo activated complex is usually invoked as an explanation for the preference for endo adduct exhibited by most Diels-Alder reactions. Figure 1.2. Endo and exo pathway for the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone. As was first noticed by Berson, the polarity of the endo activated complex exceeds that of the exo counterpart due to alignment of the dipole moments of the diene and the dienophile K The symmetry-allowed secondary orbital interaction that is only possible in the endo activated complex is usually invoked as an explanation for the preference for endo adduct exhibited by most Diels-Alder reactions.
If a Michael reaction uses an unsymmetrical ketone with two CH-groups of similar acidity, the enol or enolate is first prepared in pure form (p. llff.). To avoid equilibration one has to work at low temperatures. The reaction may then become slow, and it is advisable to further activate the carbon-carbon double bond. This may be achieved by the introduction of an extra electron-withdrawing silyl substituent at C-2 of an a -synthon. Treatment of the Michael adduct with base removes the silicon, and may lead as well to an aldol addition (G. Stork, 1973, 1974 B R.K. Boeckman, Jr., 1974). [Pg.73]

The widely used Moifatt-Pfltzner oxidation works with in situ formed adducts of dimethyl sulfoxide with dehydrating agents, e.g. DCC, AcjO, SO], P4O10, CCXTl] (K.E, Pfitzner, 1965 A.H. Fenselau, 1966 K.T. Joseph, 1967 J.G. Moffatt, 1971 D. Martin, 1971) or oxalyl dichloride (Swem oxidation M. Nakatsuka, 1990). A classical procedure is the Oppenauer oxidation with ketones and aluminum alkoxide catalysts (C. Djerassi, 1951 H. Lehmann, 1975). All of these reagents also oxidize secondary alcohols to ketones but do not attack C = C double bonds or activated C —H bonds. [Pg.133]

Unstrained difluorotetramethyldisilane (84) gives the 1 1 adduct 85 as the main product and the 1 2 adduct 86 as a minor product[78,79]. On the other hand, the dimerization and double silylation of conjugated dienes with (Me3Si)2 catalyzed by PdCl2(PhCN)2 take place at 90" C[80]. Pd(dba)2 without phosphine is an active catalyst for the reaction, which proceeds in DMF to give 87 at room temperature[81], A five-membered ring is formed by the application of the reaction to the di-(2,4-pentadienyl)malonate (69)[82]. [Pg.436]

A radically different course is followed when the reaction of 2-alkyl-substituted thiazoles is periormed in methanol or acetonitrile (335), 2 1 adducts containing seven-membered azepine rings (91) are being formed in which two of the original activated hydrogen atoms have altered positions (Scheme 55). A similar azepine adduct (92) was obtained by... [Pg.98]

The simplest of all Diels-Alder reactions cycloaddition of ethylene to 1 3 butadi ene does not proceed readily It has a high activation energy and a low reaction rate Substituents such as C=0 or C=N however when directly attached to the double bond of the dienophile increase its reactivity and compounds of this type give high yields of Diels-Alder adducts at modest temperatures... [Pg.409]

Propagation. The initiator fragment reacts with a monomer M to begin the conversion to polymer the center of activity is retained in the adduct. Monomers continue to add in some way until molecules are formed with degree of polymerization n ... [Pg.347]

Michael condensations are catalyzed by alkaU alkoxides, tertiary amines, and quaternary bases and salts. Active methylene compounds and aUphatic nitro compounds add to form P-substituted propionates. These addition reactions are frequendy reversible at high temperatures. Exceptions are the tertiary nitro adducts which are converted to olefins at elevated temperatures (24). [Pg.151]

Cyclodienes. These are polychlorinated cycHc hydrocarbons with endomethylene-bridged stmctures, prepared by the Diels-Alder diene reaction. The development of these insecticides resulted from the discovery in 1945 of chlordane, the chlorinated adduct of hexachlorocyclopentadiene and cyclopentadiene (qv). The addition of two Cl atoms across the double bond of the ftve-membered ring forms the two isomers of chlordane [12789-03-6] or l,2,4,5,6,7,8,8-octachloro-2,3,3t ,4,7,7t -hexahydro-4,7-methano-lJT-indene, QL-trans (mp 106.5°C) and pt-tis (32) (mp 104.5°C). The p-isomerhas signiftcantiy greater insecticidal activity. Technical chlordane is an amber Hquid (bp 175°C/267 Pa, vp 1.3 mPa at 25°C) which is soluble in water to about 9 fig/L. It has rat LD qS of 335, 430 (oral) and 840, 690 (dermal) mg/kg. Technical chlordane contains about 60% of the isomers and 10—20% of heptachlor. It has been used extensively as a soil insecticide for termite control and as a household insecticide. [Pg.277]

The phosphorodithioates DNA derivatives have been shown to bind specifically to complementary DNA or ENA sequences to form stable adducts. Because they are also highly resistant to degradation by cellular exonucleases, these derivatives can be useful both for appHcations in research and as therapeutic dmgs. Phosphorodithioate DNA has been shown to stimulate Rnase H activity in nuclear cell extracts and is a potent inhibitor of HIV type-1 reverse transcriptase (56). [Pg.262]

Activated tertiary amines such as triethanolamine (TEA) and methyl diethanolamine (MDEA) have gained wide acceptance for CO2 removal. These materials require very low regeneration energy because of weak CO2 amine adduct formation, and do not form carbamates or other corrosive compounds (53). Hybrid CO2 removal systems, such as MDEA —sulfolane—water and DIPA—sulfolane—water, where DIPA is diisopropylamine, are aqueous alkaline solutions in a nonaqueous solvent, and are normally used in tandem with other systems for residual clean-up. Extensive data on the solubiUty of acid gases in amine solutions are available (55,56). [Pg.349]

An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

Conversion of the C-2 amide to a biologically inactive nitrile, which can be further taken via a Ritter reaction (29) to the corresponding alkylated amide, has been accomphshed. When the 6-hydroxyl derivatives are used, dehydration occurs at this step to give the anhydro amide. Substituting an A/-hydroxymethylimide for isobutylene in the Ritter reaction yields the acylaminomethyl derivative (30). Hydrolysis affords an aminomethyl compound. Numerous examples (31—35) have been reported of the conversion of a C-2 amide to active Mannich adducts which are extremely labile and easily undergo hydrolysis to the parent tetracycline. This reverse reaction probably accounts for the antibacterial activity of these tetracyclines. [Pg.178]

A number of disinfectants apparentiy owe their activity to formaldehyde, although there is argument on whether some of them function by other mechanisms. In this category, the dmg with the longest history is hexamethylenetetramine (hexamine, urotropin) [100-97-0] which is a condensation product of formaldehyde and ammonia that breaks down by acid hydrolysis to produce formaldehyde. Hexamine was first used for urinary tract antisepsis. Other antimicrobials that are adducts of formaldehyde and amines have been made others are based on methylolate derivations of nitroalkanes. The apphcations of these compounds are widespread, including inactivation of bacterial endotoxin preservation of cosmetics, metal working fluids, and latex paint and use in spin finishes, textile impregnation, and secondary oil recovery (117). [Pg.127]

Usually, a rapid binding step of the inhibitor I to the enzyme E leads to the formation of the initial noncovalent enzyme-inhibitor complex E-I. This is usually followed by a rate determining catalytic step, leading to the formation of a highly reactive species [E—I ]. This species can either undergo reaction with an active site amino acid residue of the enzyme to form the covalent enzyme-inhibitor adduct E—I", or be released into the medium to form product P and free active enzyme E. [Pg.322]

Doubt (75ZN(B)822) has been cast on a number of claims for the formation of 2-azetin-4-ones from cycloaddition of activated isocyanates to acetylenes (70TL119). The simple 2-azetin-4-one (246) was not isolated or even detected directly at -50 °C in the photofragmentation of compound (245), but indirect evidence for its formation was the isolation of adducts (248 X = MeO, MeNH) in the presence of methanol or methylamine (75TL1335). The most convincing evidence for an isolable 2-azetin-4-one involves treatment of the... [Pg.277]

Aromatic hydrocarbons can be purified as their picrates using the procedures described for amines. Instead of picric acid, 1,3,5-trinitrobenzene or 2,4,7-trinitrofluorenone can also be used. In all these cases, following recrystallisation, the hydrocarbon can be isolated either as described for amines or by passing a solution of the adduct through an activated alumina column and eluting with toluene or petroleum ether. The picric acid and nitro compounds are more strongly adsorbed on the column. [Pg.58]


See other pages where Adducts activation is mentioned: [Pg.190]    [Pg.190]    [Pg.6]    [Pg.11]    [Pg.177]    [Pg.187]    [Pg.311]    [Pg.482]    [Pg.167]    [Pg.436]    [Pg.133]    [Pg.489]    [Pg.224]    [Pg.269]    [Pg.88]    [Pg.110]    [Pg.425]    [Pg.425]    [Pg.50]    [Pg.163]    [Pg.246]    [Pg.86]    [Pg.68]    [Pg.326]    [Pg.324]    [Pg.64]    [Pg.85]    [Pg.550]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Adducts giving Nuclease Activity to Polymers

Electrophilic Theory, Metabolic Activation, and DNA Adducts

Metabolic Activation of Chemical Carcinogens and DNA Adduct Formation

© 2024 chempedia.info