Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic spectrometry spectrometer

Metal ions such Cu, Cd, and Pb can be preconcentrated from water samples using liquid membranes containing 40% w/w of di-2-ethylhexylphosphoric acid in kerosene diluent in a PTFE support. The liquid membrane can be coupled on-line to an atomic absorption spectrometer and has been shown to be stable for at least 200 h with extraction efficiencies over 80%, and enrichment factors of 15 can be obtained. A liquid membrane has also been used for sample cleanup and enrichment of lead in urine samples prior to determination by atomic absorption spectrometry [100]. The experimental setup for metal enrichment is shown in Fig. 13.4. Lead was enriched 200 times from urine [80] and several metals were enriched 200 times from natural waters [88]. Using hollow fiber... [Pg.581]

One of the more recent branches of atomic spectrometry, although perhaps the most exciting one, is atomic mass spectrometry, which has had a very important impact on science and technology. At present, atomic mass spectrometry is ordinarily performed using inductively coupled plasma ion sources and either a quadrupole or a scanning sector-field mass spectrometer as an analyser. The remarkable attributes of such a combination, being an indispensable tool for elemental analysis, include ... [Pg.20]

In principle, all these capabilities will enhance the performance of any type of atomic spectrometry, independently of the nature of the spectroscopic technique used (e.g. a procedure that separates trace elements from a large volume of a highly saline medium and releases them into a smaller volume of dilute nitric acid can be used in conjunction with any type of spectrometer). [Pg.34]

Transient signals are typically obtained in atomic spectrometry when samples are introduced by flow injection techniques or when the spectrometer is used as an element-specific detector in hyphenated techniques. Inductively coupled plasma mass spectrometry has nowadays become the detection technique of choice for multielement-specific detection in speciation as it allows multielemental... [Pg.39]

Using palladium-magnesium nitrate mixtures as chemical modifiers, Hinds and Jackson [114] effectively delayed the atomisation of lead until atomic absorption spectrometer furnace conditions were nearly isothermal. This technique was used to determine lead in soil slurries. Zhang et al. [115] investigated the application of low-pressure electrothermal atomic absorption spectrometry to the determination of lead in soils. [Pg.43]

Azzaria and Aftabi [ 149] showed that stepwise (as compared to continuous) heating of soil samples before determination of mercury by atomic absorption spectrometry gives increased resolution of the different phases of mercury. A gold-coated graphite furnace atomic absorption spectrometer has been used to determine mercury in soils [150]. [Pg.46]

U. Heitmann, S. Florek, M. D. Huang, Sensitivity, linearity and working range of a modem continuum-source atomic absorption spectrometer, Seventh Rio Symposium on Atomic Spectrometry, Book of Abstracts, Florianopolis, SC, Brazil, 7-12 April 2002,... [Pg.114]

Aliquots of the clear liquid phase above the sediment were used to measure Si and A1 concentrations by atomic absorption spectrometry (Perkin-Elmer atomic absorption spectrometer, model 3030B) and for the determination of the degree of Si polycondensation in the liquid phase by molybdate method (20). [Pg.125]

Apparatus. A nonflame atomic absorption spectrometer (Varian-Techtron AA-5, Model 63 Carbon Rod Atomizer) with background correction was used for all of the analyses with the exception of calcium. Calcium was determined by flame atomic absorption spectrometry (Varian-Techtron Model 1000). [Pg.174]

Much more sensitive and less time-consuming techniques such as mass spectrometry, atomic emission, and atomic absorption are needed for the analysis of pollutants. Detectors such as graphite furnace-atomic absorption spectrometer (GF-AAS), inductively coupled plasma-mass spectrometer (ICP-MS), or inductively coupled plasma-atomic emission spectrometer (ICP-AES) seem to be ideal candidates for the analysis of trace metals because of their very low detection limits. The high temperatures used avoid the need for tedious digestions in many samples. FFF-gas chromatography-mass spectrometry could perhaps be used in the analysis of particular organic molecules. [Pg.1210]

It frequently occurs in analytical spectrometry that some characteristic, y, of a sample is to be determined as a function of some other quantity, x, and it is necessary to determine the relationship or fimction between x and y, which may be expressed as y = /(x). An example would be the calibration of an atomic absorption spectrometer for a specific element prior to the determination of the concentration of that element in a series of samples. [Pg.156]

Owing to the line broadening mechanisms, the physical widths of spectral lines in most radiation sources used in optical atomic spectrometry are between 1 and 20 pm. This applies both for atomic emission and atomic absorption line profiles. In reality the spectral bandwidth of dispersive spectrometers is much larger than the physical widths of the atomic spectral lines. [Pg.16]

Atomic spectrometric methods of analysis essentially make use of equipment for spectral dispersion so as to isolate the signals of the elements to be determined and to make the full selectivity of the methodology available. In optical atomic spectrometry, this involves the use of dispersive as well as of non-dispersive spectrometers. The radiation from the spectrochemical radiation sources or the radiation which has passed through the atom reservoir is then imaged into an optical spectrometer. In the case of atomic spectrometry, when using a plasma as an ion source, mass spectrometric equipment is required so as to separate the ions of the different analytes according to their mass to charge ratio. In both cases suitable data acquisition and data treatment systems need to be provided with the instruments as well. [Pg.34]

In optical atomic spectrometry the radiation emitted by the radiation source or the radiation which comes from the primary source and has passed through the atom reservoir has to be lead into a spectrometer. In order to make optimum use of the source, the radiation should be lead as complete as possible into the spectrometer. The amount of radiation passing through an optical system is expressed by its optical conductance. Its geometrical value is given by ... [Pg.51]

These two-dimensional detectors [63] are ideally suited for coupling with an echelle spectrometer, which is state of the art in modem spectrometers for ICP atomic emission spectrometry as well as for atomic absorption spectrometers. As for CCDs the sensitivity is high and along with the signal-to-noise ratios achievable, they have become real alternatives to photomultipliers for optical atomic spectrometry (Table 3) and will replace them more and more. [Pg.70]

As in the sources used in optical atomic spectrometry a considerable ionization takes place, they are also of use as ion sources for mass spectrometry. Although an overall treatment of instrumentation for mass spectrometry is given in other textbooks [68], the most common types of mass spectrometers will be briefly outlined here. In particular, the new types of elemental mass spectrometry sources have to be considered, namely the glow discharges and the inductively and eventually the microwave plasmas. In contrast with classical high voltage spark mass spectrometry (for a review see Ref. [69]) or thermionic mass spectrometry (see e.g. Ref. [70]), the plasma sources mentioned are operated at a pressure which is considerably... [Pg.72]

In commercial instrumentation fairly low-cost quadrupole mass spectrometers and also expensive double-focussing sector field mass spectrometers are usually used (for a survey of mass spectrometers for analytical use, see Ref. [71]) and today new types of mass spectrometers such as time-of-flight mass spectrometers are being find utilized in plasma atomic spectrometry. [Pg.73]

In a system for coherent forward scattering, the radiation of a primary source is led through the atom reservoir (a flame or a furnace), across which a magnetic field is applied. When the atom reservoir is placed between crossed polarizers scattered signals for the atomic species occur on a zero-background. When a line source such as a hollow cathode lamp or a laser is used, determinations of the respective elements can be performed. In the case of a continuous source, such as a xenon lamp, and a multichannel spectrometer simultaneous multielement determinations can also be performed. The method is known as coherent forward scattering atomic spectrometry [309, 310]. This approach has become particularly interesting since flexible multichannel diode array spectrometers have became available. [Pg.183]

Coherent forward scattering (CFS) atomic spectrometry is a multielement method. The instrumentation required is simple and consists of the same components as a Zeeman AAS system. As the spectra contain only some resonance lines, a spectrometer with just a low spectral resolution is required. The detection limits depend considerably on the primary source and on the atom reservoir used. When using a xenon lamp as the primary source, multielement determinations can be performed but the power of detection will be low as the spectral radiances are low as compared with those of a hollow cathode lamp. By using high-intensity laser sources the intensities of the signals and accordingly the power of detection can be considerably improved. Indeed, both Ip(k) and Iy(k) are proportional to Io(k). When furnaces are used as the atomizers typical detection limits in the case of a xenon arc are Cd 4, Pb 0.9, T11.5, Fe 2.5 and Zn 50 ng [309]. They are considerably higher than in furnace AAS. [Pg.184]

Knowledge of the atomic spectra is also very important so as to be able to select interference-free analysis lines for a given element in a well-defined matrix at a certain concentration level. To do this, wavelength atlases or spectral cards for the different sources can be used, as they have been published for arcs and sparks, glow discharges and inductively coupled plasma atomic emission spectrometry (see earlier). In the case of ICP-OES, for example, an atlas with spectral scans around a large number of prominent analytical lines [329] is available, as well as tables with normalized intensities and critical concentrations for atomic emission spectrometers with different spectral bandwidths for a large number of these measured ICP line intensities, and also for intensities calculated from arc and spark tables [334]. The problem of the selection of interference-free lines in any case is much more complex than in AAS or AFS work. [Pg.202]

Atomization of the sample is usually facilitated by the same flame aspiration technique that is used in flame emission spectrometry, and thus most flame atomic absorption spectrometers also have the capability to perform emission analysis. The previous discussion of flame chemistry with regard to emission spectroscopy applies to absorption spectroscopy as well. Flames present problems for the analysis of several elements due to the formation of refractory oxides within the flame, which lead to nonlinearity and low limits of detection. Such problems occur in the determination of calcium, aluminum, vanadium, molybdenum, and others. A high-temperature acetylene/nitrous oxide flame is useful in atomizing these elements. A few elements, such as phosphorous, boron, uranium, and zirconium, are quite refractory even at high temperatures and are best determined by nonflame techniques (Table 2). [Pg.430]


See other pages where Atomic spectrometry spectrometer is mentioned: [Pg.489]    [Pg.157]    [Pg.241]    [Pg.58]    [Pg.260]    [Pg.324]    [Pg.204]    [Pg.7]    [Pg.161]    [Pg.169]    [Pg.260]    [Pg.310]    [Pg.320]    [Pg.50]    [Pg.81]    [Pg.425]    [Pg.222]    [Pg.31]    [Pg.32]    [Pg.73]    [Pg.258]    [Pg.375]    [Pg.503]    [Pg.201]    [Pg.437]    [Pg.211]    [Pg.261]   
See also in sourсe #XX -- [ Pg.290 ]

See also in sourсe #XX -- [ Pg.290 ]




SEARCH



Atoms spectrometer

Spectrometer Spectrometry

© 2024 chempedia.info