Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

At interfaces, importance

Based on the underlying physical chemistry of surfactants at interfaces, important features of foam stmcture, stabiHty, rheology, and their interrelationships can be considered as ultimately originating in the molecular composition of the base Hquid. [Pg.428]

The discussion focuses on two broad aspects of electrical phenomena at interfaces in the first we determine the consequences of the presence of electrical charges at an interface with an electrolyte solution, and in the second we explore the nature of the potential occurring at phase boundaries. Even within these areas, frequent reference will be made to various specialized treatises dealing with such subjects rather than attempting to cover the general literature. One important application, namely, to the treatment of long-range forces between surfaces, is developed in the next chapter. [Pg.169]

Some of the most interesting and important chemical and physical interactions occur when dissimilar materials meet, i.e. at an interface. The understanding of the physics and chemistry at interfaces is one of the most challenging and important endeavors in modem science. [Pg.282]

The reactions of biopolymers at interfaces fonn tire basis of some extremely important industrial processes. The primary process in all cases is tire adsorjDtion of biomolecules, usually proteins. If ultimately living cells are adsorbed, tliis always takes place onto a preadsorbed protein layer (which may be secreted by tire cells themselves [130]). These processes can be classified into tliree categories ... [Pg.2839]

Adsorption of Metal Ions and Ligands. The sohd—solution interface is of greatest importance in regulating the concentration of aquatic solutes and pollutants. Suspended inorganic and organic particles and biomass, sediments, soils, and minerals, eg, in aquifers and infiltration systems, act as adsorbents. The reactions occurring at interfaces can be described with the help of surface-chemical theories (surface complex formation) (25). The adsorption of polar substances, eg, metal cations, M, anions. A, and weak acids, HA, on hydrous oxide, clay, or organically coated surfaces may be described in terms of surface-coordination reactions ... [Pg.218]

The electrostatic behavior of intrinsically nonconductive substances, such as most pure thermoplastics and saturated hydrocarbons, is generally governed by chemical species regarded as trace contaminants. These are components that are not deliberately added and which may be present at less than detectable concentrations. Since charge separation occurs at interfaces, both the magnitude and polarity of charge transfer can be determined by contaminants that are surface active. This is particularly important for nonconductive liquids, where the electrostatic behavior can be governed by contaminants present at much less than 1 ppm (2-1.3). [Pg.9]

Thin-film XRD is important in many technological applications, because of its abilities to accurately determine strains and to uniquely identify the presence and composition of phases. In semiconduaor and optical materials applications, XRD is used to measure the strain state, orientation, and defects in epitaxial thin films, which affect the film s electronic and optical properties. For magnetic thin films, it is used to identify phases and to determine preferred orientations, since these can determine magnetic properties. In metallurgical applications, it is used to determine strains in surfiice layers and thin films, which influence their mechanical properties. For packaging materials, XRD can be used to investigate diffusion and phase formation at interfaces... [Pg.199]

The stored strain energy can also be determined for the general case of multiaxial stresses [1] and lattices of varying crystal structure and anisotropy. The latter could be important at interfaces where mode mixing can occur, or for fracture of rubber, where f/ is a function of the three stretch rations 1], A2 and A3, for example, via the Mooney-Rivlin equation, or suitable finite deformation strain energy functional. [Pg.380]

Many of the important results for diffusion and adhesion at interfaces discussed in this chapter are summarized in Table 3. [Pg.398]

Given the potential future importance of ceramics in areas as diverse as electronics (see Chapter 4), machine tools, heat engines, and superconductors (see Chapter 4), the United States can ill afford to surrender technical leadership to its competitors. The dominant trend in the field is toward materials with finer microstractures, fewer defects, and better interactions at interfaces (particularly in composites). Chemical processes provide important tools to capture the promise of ceramics for the benefit of our society and to maintain our international competitive position in technology. [Pg.84]

Liposomes have been widely used as model membranes and their physicochemical properties have therefore been studied extensively. More recently, they have become important tools for the study of membrane-mediated processes (e.g., membrane fusion), catalysis of reactions occurring at interfaces, and energy conversion. Besides, liposomes are currently under investigation as carrier systems for drugs and as antigen-presenting systems to be used as vaccines. [Pg.261]

In fact, different techniques revealed cadmium segregation and decrease of the Pb/Se ratio near the InP/PbSe interface, indicating that during the first steps of deposition a CdSe layer is formed on InP prior to the PbSe growth. It was suggested that selective adsorption of Cd(0) on the InP surface gives rise to an epitaxial CdSe monolayer, which facilitates an ordered PbSe growth on account of the small lattice mismatch (0.7%) at the CdSe/(rock salt)PbSe interface. Importantly, it was found... [Pg.157]

In this section we treat some electrochemical reactions at interfaces with solid electrolytes that have been chosen for both their technological relevance and their scientific relevance. The understanding of the pecularities of these reactions is needed for the technological development of fuel cells and other devices. Investigation of hydrogen or oxygen evolution reactions in some systems is very important to understand deeply complex electrocatalytic reactions, on the one hand, and to develop promising electrocatalysts, on the other. [Pg.438]

While apparent from the amount of work that can be reported, it is obvious that we really do not have a comprehensive view of the dynamics of polar solvation at liquid interfaces. Especially lacking are studies probing the inertial response to the dynamics of polar solvation occurring at interfaces. There is enormous room for growth in the entire field as there exist such an extensive range of interfaces that are important in chemistry, biology, and physics. We can look forward to more detailed studies on the vast array of available systems. [Pg.416]

Nonstoichiometry of the oxides can be due to a number of reasons, such as hydration,159 incomplete oxidation,158 and the generation of defects at interfaces.157 An important factor affecting the chemical composition of the oxides is the incorporation of electrolyte species into the growing alumina. There have even been suggestions to use this for impurity doping of oxides and modifying their properties.161 Various kinds of anion distributions and mechanisms of anion incorporation and their influence on oxide properties have been reported. The problems attracting attention are ... [Pg.450]

In summary, the QSAR and QSPR approaches, as well as their modeling techniques, are important and a basic need for environmental planning and engineering management. Molecular connectivity indices (MCIs) are a sensitive property for many organic pollutants. Such MCIs can be used to predict the partitioning of pollutants at interfaces as will be seen in Sect. 3. [Pg.270]

It is important to stress that, when measuring the simple concentration ratios of mean abundances in the solid and liquid phases formed at interface equilibrium (as is typically done in comparative studies), the resulting (apparent) partition coefficient is related to partition coefficient K valid at the interface, by... [Pg.690]

When mixing two surfactants species in a SOW system, an equilibrium takes place between the oil and water phases and the interface for each species. Since the two species do not necessarily exhibit the same affinity for the interface and the oil and water bulk phases, the compositions of the surfactant mixtures at interface and in the phases might be different. For instance if a very hydrophilic species is mixed with a very lipophihc one, as often recommended in the old formulation literature, then the hydrophihc surfactant has a strong tendency to partition in water, whereas the lipophihc one would partition in the oil. In this case the surfactant mixture in water will contain a large majority of hydrophilic species, i.e., it will be very hydrophilic, whereas the oil phase will predominantly contain the hpophihc species, with the remaining adsorbing at interface. This situation in which each species actuates on its own, more or less independently of the other, has been called non-collective behavior. Since the surfactant mixture composition at interface is often the one that commands the actual property of the system, such as the interfacial tension or the stabihty of the emulsion, it is most important to know how to calculate or measure the characteristics of the mixture present at interface. Such methods will be discussed in the next section. [Pg.85]

The point at which, supposedly, 50% of the acid species is transformed in salt corresponds to the half-neutrahzation, i.e., when half the alkahne required to reach the equivalence point has been added. This position corresponds to a buffer zone in which the variation of pH is small with respect to the amoimt of added neutralization solution (Fig. 14 left plot). Hence, in this region a very slight variation of pH can produce a very large variation of neutralization (Fig. 14 right plot), i.e., a considerable alteration of the relative proportion of AH and A . Far away from this pH, the opposite occurs. Consequently, the pH could be used to carry out a formulation scan, but the scale is far from hnear and the variation of pH does not render the variation of the characteristic parameter of the actual surfactant mixture that is at interface [77,78]. The appropriate understanding of the behavior of this kind of acid-salt mixture is particularly important in enhanced oil recovery by alkaline flooding [79,80] and emulsification processes that make use of the acids contained in the crude oils [81-83]. [Pg.103]

Competitive adsorption of molecules at interfaces, or the displacement of one stabilizing molecule by another, is an important process in food manufacture. Molecular rearrangement at interfaces not only affects the... [Pg.85]


See other pages where At interfaces, importance is mentioned: [Pg.1]    [Pg.1294]    [Pg.2574]    [Pg.545]    [Pg.327]    [Pg.228]    [Pg.12]    [Pg.65]    [Pg.32]    [Pg.84]    [Pg.136]    [Pg.194]    [Pg.41]    [Pg.649]    [Pg.228]    [Pg.100]    [Pg.47]    [Pg.526]    [Pg.32]    [Pg.302]    [Pg.404]    [Pg.501]    [Pg.574]    [Pg.224]    [Pg.296]    [Pg.26]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Interface importance

© 2024 chempedia.info