Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsification processes

The emulsification process in principle consists of the break-up of large droplets into smaller ones due to shear forces (10). The simplest form of shear is experienced in lamellar flow, and the droplet break-up may be visualized according to Figure 4. The phenomenon is governed by two forces, ie, the Laplace pressure, which preserves the droplet, and the stress from the velocity gradient, which causes the deformation. The ratio between the two is called the Weber number. We, where Tj is the viscosity of the continuous phase, G the velocity gradient, r the droplet radius, and y the interfacial tension. [Pg.197]

In the case of emulsions with three liquids the presence of the third phase results in a reduction of the energy input for the emulsification process, whereas the emulsion with a Hquid crystal as the third phase shows interesting stabilization mechanisms. Finally, the emulsion with added particles illustrates the importance of Hquid—solid wetting for stabiHty. [Pg.201]

Emulsification processes produce spherical droplets of the internal phase to minimize the interfacial area... [Pg.245]

Steric stabilization is particularly useful and widely applied during emulsification processes. One major advantage compared to electrostatic stabilization is the relative insensitivity towards added electrolytes. An auxiliary effect promoting dispersion stability is the significant viscosity increase of the dispersion medium. [Pg.252]

High pressure homogenizers are especially suitable for the emulsification processes in the food, pharmaceutical and bioprocess industries. A general disadvantage of these type of reactors is that there is no precise control over the cavitationally active volume and the magnitude of the pressure pulses that will be generated at the end of the cavitation events (cavitational intensity), unless the valve seat designs are substantially modified. [Pg.78]

Fig. 4.18 Capacity increase by cold emulsification processes using Eumulgin VL 75 as emulsifier. Fig. 4.18 Capacity increase by cold emulsification processes using Eumulgin VL 75 as emulsifier.
More complex geometries have been developed [40] and the influence of the geometrical structure has been examined. Although straight-through microchannel emulsification has been developed [39,41], the production rates are still low compared to those obtained with standard emulsification methods. However, the very high monodispersity makes this emulsification process very suitable for some specific fechnological applicafions such as polymeric microsphere synfhesis [42,43], microencapsulation [44], sol-gel chemistry, and electro-optical materials. [Pg.8]

V. Schroder, O. Behrend, and H. Schubert Effect of Dynamic Interfacial Tension on the Emulsification Process Using Microporous Ceramic Membranes. J. Colloid Interface Sci. 202, 334 (1998). [Pg.43]

J.C. Lopez-Montilla, P.E. Herrera-Morales, and D.O. Shah New Method to Quantitatively Determine Spontaneity of Emulsification Process. Langmuir 18, 4258 (2002). [Pg.46]

The point at which, supposedly, 50% of the acid species is transformed in salt corresponds to the half-neutrahzation, i.e., when half the alkahne required to reach the equivalence point has been added. This position corresponds to a buffer zone in which the variation of pH is small with respect to the amoimt of added neutralization solution (Fig. 14 left plot). Hence, in this region a very slight variation of pH can produce a very large variation of neutralization (Fig. 14 right plot), i.e., a considerable alteration of the relative proportion of AH and A . Far away from this pH, the opposite occurs. Consequently, the pH could be used to carry out a formulation scan, but the scale is far from hnear and the variation of pH does not render the variation of the characteristic parameter of the actual surfactant mixture that is at interface [77,78]. The appropriate understanding of the behavior of this kind of acid-salt mixture is particularly important in enhanced oil recovery by alkaline flooding [79,80] and emulsification processes that make use of the acids contained in the crude oils [81-83]. [Pg.103]

During the studies of phase behaviour two types of liquid crystalline phases were identified. LC material was viscous and exhibited intense "white" birefingence. material was apparently homogeneous but of low viscosity and exhibited "multi-coloured" birefringence. The liquid crystalline phases observed in the equilibrium studies of surfactant concentrations up to 25 are unlikely to take part in the self-emulsification process due to the presence of two-phase regions between L2 and liquid crystalline phases however, LC material may account for the improved stability of emulsions formed by 25 surfactant systems (Table II). Figure 4c indicates that by increasing the surfactant concentration to 30 the... [Pg.250]

The concept of interfacial mesophases promoting spontaneous emulsification (21.22) can be applied to the Tagat TO - Miglyol 812 system, where stable liquid crystalline dispersion phases are adequate to promote the process of self-emulsification. The stability of the resulting emulsion systems can also be accounted for by liquid crystalline interface stabilisation (23.24). Phase separation of material as observed above 55f surfactant, in conjuction with the increased viscosities of such systems, will inhibit the dynamics of the self-emulsification process and hence the quality of self-emulsified systems declines when the surfactant concentration is increased above 55. ... [Pg.252]

Pertinent examples of the value of dimensional analysis have been reported in a series of papers by Maa and Hsu (19,37,63). In their first report, they successfully established the scale-up requirements for microspheres produced by an emulsification process in continuously stirred tank reactors (CSTRs) (63). Their initial assumption was that the diameter of the microspheres, <7ms, is a function of phase quantities, physical properties of the dispersion and dispersed phases, and processing equipment parameters ... [Pg.118]

This observation needs to be compared to the few literature reports on the underlying factors that control the preparation of the albumin particles by the emulsification process. For example, it has been widely reported that parameters such as the variability in stirring rates and temperature had a significant influence on the size of the resulting beads and it has been concluded that the main process variables were controlled by the oil phase of the emulsion. [Pg.237]

There have been relatively few studies of the properties of the albumin beads or particles. Gupta and Haung (1989) demonstrated that beads made by the emulsification process at temperatures over the range of 105-150°C varied in the release of incorporated doxorubicin, rates decreasing with an increase of the denaturation temperature. This indicated that the beads themselves were becoming hard or more dense. [Pg.237]

The goal of food emulsion manufacturers is to produce emulsions that meet or exceed the expectations of their clientele. As a first step, companies typically conduct market studies to determine what these expectations are. Sensory evaluations are then used to translate these expectations into product-specific criteria (e.g., emulsion color, texture, appearance) that serve as guidelines to design the emulsification process and verify the quality of the produced emulsion. If emulsion properties comply with the set standards (i.e., their values are within an acceptable range), manufacturers can be confident that their customer base will be satisfied with the product. [Pg.599]

Oil-based, water-dispersible flavours (emulsions) are protected by the addition of oil-soluble antioxidants such as butylated hydroxy anisole (BHA) and butylated hydroxy toluene (BHT) to the oil phase before the emulsification process 1,000 mg/1 is the typical usage level in essential oils. Since the flavour emulsion will be used at the rate of about 0.1%, the level of antioxidant in the finished beverage will be of the order of 1 mg/1, which will safely comply with an ADI of 5 mg/kg body weight for either additive. [Pg.122]

For these reasons, recently much attention has been put in alternative emulsification processes, such as the membrane emulsification (ME). [Pg.464]


See other pages where Emulsification processes is mentioned: [Pg.249]    [Pg.325]    [Pg.226]    [Pg.246]    [Pg.165]    [Pg.166]    [Pg.863]    [Pg.148]    [Pg.7]    [Pg.18]    [Pg.211]    [Pg.119]    [Pg.119]    [Pg.215]    [Pg.215]    [Pg.221]    [Pg.221]    [Pg.236]    [Pg.236]    [Pg.238]    [Pg.74]    [Pg.85]    [Pg.85]    [Pg.1591]    [Pg.249]    [Pg.553]    [Pg.103]   
See also in sourсe #XX -- [ Pg.177 ]

See also in sourсe #XX -- [ Pg.468 ]

See also in sourсe #XX -- [ Pg.331 , Pg.364 ]




SEARCH



Emulsifer

Emulsification

© 2024 chempedia.info