Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatics temperature

C. A typical aromatic amine. Best prepared by the prolonged action of concentrated ammonia solution at a high temperature upon anthraquinone-l-sulphonic acid in the presence of BaClj and by reduction of the corresponding nitro compound or by amination of the chloroanthraquinone. [Pg.29]

The composition of coal tar varies with the carbonization method but consists, largely, of mononuclear and polynuclear aromatic compounds and their derivatives. Coke oven tars are relatively low in aliphatic and phenolic content while low-temperature tars have much higher contents of both. [Pg.103]

COT is prepared by the polymerization of ethyne at moderate temperature and pressure in the presence of nickel salts. The molecule is non-planar and behaves as a typical cyclic olefin, having no aromatic properties. It may be catalytically hydrogenated to cyclo-octene, but with Zn and dil. sulphuric acid gives 1,3,6-cyclooclairiene. It reacts with maleic anhydride to give an adduct, m.p. 166 C, derived from the isomeric structure bicyclo-4,2,0-octa-2,4,7-triene(I) ... [Pg.122]

Leuckart reaction The conversion of ketones and aromatic aldehyde,s to primary amines by reaction with ammonium methanoale at a high temperature. [Pg.238]

PPha, pyridine) organic groups (olefines, aromatic derivatives) and also form other derivatives, e.g. halides, hydrides, sulphides, metal cluster compounds Compounds containing clusters of metal atoms linked together by covalent (or co-ordinate) bands, metaldehyde, (C2H40) ( = 4 or 6). A solid crystalline substance, sublimes without melting at I12 1I5" C stable when pure it is readily formed when elhanal is left in the presence of a catalyst at low temperatures, but has unpredictable stability and will revert to the monomer, ft is used for slug control and as a fuel. [Pg.257]

As the temperatures of the distillation cuts increase, the problems get more complicated to the point where preliminary separations are required that usually involve liquid phase chromatography (described earlier). This provides, among others, a saturated fraction and an aromatic fraction. Mass spectrometry is then used for each of these fractions. [Pg.53]

Nevertheless, this type of analysis, usually done by chromatography, is not always justified when taking into account the operator s time. Other quicker analyses are used such as FIA (Fluorescent Indicator Analysis) (see paragraph 3.3.5), which give approximate but usually acceptable proportions of saturated, olefinic, and aromatic hydrocarbons. Another way to characterize the aromatic content is to use the solvent s aniline point the lowest temperature at which equal volumes of the solvent and pure aniline are miscible. [Pg.274]

The water content of crude oils is determined by a standardized method whose procedure is to cause the water to form an azeotrope with an aromatic (generally industrial xylene). Brought to ambient temperature, this azeotrope separates into two phases water and xylene. The volume of water is then measured and compared with the total volume of treated crude. [Pg.326]

The conversion takes place at high temperature (820-850°C) and very short residence time (hundredth of seconds) in the presence of steam. The by-products are hydrogen, methane and a highly aromatic residual fuel-oil. [Pg.382]

Grigoleit U, Lenzer T and Luther K 2000 Temperature dependence of collisional energy transfer in highly excited aromatics studied by classical trajectory calculations Z. Phys. Chem., A/F214 1065-85... [Pg.1086]

The mechanism of aromatic sulphonation is complex and may vary, e.g. with the concentration of water or oleum in the acid, the temperature, and the hydrocarbon. One active agent is SO3, and one simplified route may be ... [Pg.178]

The controlled thermal decomposition of dry aromatic diazonium fluoborates to yield an aromatic fluoride, boron trifluoride and nitrogen is known as the Schiemann reaction. Most diazonium fluoborates have definite decomposition temperatures and the rates of decomposition, with few exceptions, are easily controlled. Another procedure for preparing the diazonium fluoborate is to diazotise in the presence of the fluoborate ion. Fluoboric acid may be the only acid present, thus acting as acid and source of fluoborate ion. The insoluble fluoborate separates as it is formed side reactions, such as phenol formation and coupling, are held at a minimum temperature control is not usually critical and the temperature may rise to about 20° without ill effect efficient stirring is, however, necessary since a continuously thickening precipitate is formed as the reaction proceeds. The modified procedure is illustrated by the preparation of -fluoroanisole ... [Pg.594]

Clalsen aldol condensation. This consists in the condensation of an aromatic aldehyde and an ester R—CHjCOOCjHj in the presence of finely divided sodium and a trace of alcohol at a low temperature. The catalyst is the alkoxide ion aqueous alkalis caimot be employed since they will hydrolyse the resulting ester. The product is an ap-unsaturated ester, for example ... [Pg.710]

Aromatic aldehydes react with the dimedone reagent (Section 111,70,2). All aromatic aldehydes (i) reduce ammoniacal silver nitrate solution and (ii) restore the colour of SchifiF s reagent many react with sodium bisulphite solution. They do not, in general, reduce Fehling s solution or Benedict s solution. Unlike aliphatic aldehydes, they usually undergo the Cannizzaro reaction (see Section IV,123) under the influence of sodium hydroxide solution. For full experimental details of the above tests, see under Ali-phalic Aldehydes, Section 111,70. They are easily oxidised by dilute alkaline permanganate solution at the ordinary temperature after removal of the manganese dioxide by sulphur dioxide or by sodium bisulphite, the acid can be obtained by acidification of the solution. [Pg.721]

Aromatic alcohols are insoluble in water and usually burn with a smoky flame. Their boiling points are comparatively high some are solids at the ordinary temperature. Many may be oxidised by cautious addi-tion of dilute nitric acid to the corresponding aldehyde upon neutralis-tion of the excess of acid, the aldehyde may be isolated by ether extraction or steam distillation, and then identified as detailed under Aromatic Aldehydes, Section IV,135. [Pg.817]

NMR signals of the amino acid ligand that are induced by the ring current of the diamine ligand" ". From the temperature dependence of the stability constants of a number of ternary palladium complexes involving dipeptides and aromatic amines, the arene - arene interaction enthalpies and entropies have been determined" ". It turned out that the interaction is generally enthalpy-driven and counteracted by entropy. Yamauchi et al. hold a charge transfer interaction responsible for this effect. [Pg.89]

These studies at the same time aroused my interest in the mechanistic aspects of the reaetions, including the complexes of RCOF and RF with BF3 (and eventually with other Lewis acid fluorides) as well as the complexes they formed with aromatics. 1 isolated for the first time at low temperatures arenium tetrafluoroborates (the elusive (T-complexes of aromatic substitutions), although I had no means to pursue their structural study. Thus my long fascination with the chemistry of car-bocationic complexes began. [Pg.58]

Protonation of formic acid similarly leads, after the formation at low temperature of the parent carboxonium ion, to the formyl cation. The persistent formyl cation was observed by high-pressure NMR only recently (Horvath and Gladysz). An equilibrium with diprotonated carbon monoxide causing rapid exchange can be involved, which also explains the observed high reactivity of carbon monoxide in supera-cidic media. Not only aromatic but also saturated hydrocarbons (such as isoalkanes and adamantanes) can be readily formylated. [Pg.196]

Finally the chemical aromatization of Ring A which occurs in nature in the biosynthesis of estrogens must be mentioned. It can be done by thermal cleavage of the C-19 methyl group in 1,4-dien-3-ones (H.H. Inhoffen, 1940 C. Djerassi, 1950) and was later achieved at lower temperatures with lithium — biphenyl in THF (H.L. Dryden, Jr., 1964). [Pg.287]

The diazonium salts 145 are another source of arylpalladium com-plexes[114]. They are the most reactive source of arylpalladium species and the reaction can be carried out at room temperature. In addition, they can be used for alkene insertion in the absence of a phosphine ligand using Pd2(dba)3 as a catalyst. This reaction consists of the indirect substitution reaction of an aromatic nitro group with an alkene. The use of diazonium salts is more convenient and synthetically useful than the use of aryl halides, because many aryl halides are prepared from diazonium salts. Diazotization of the aniline derivative 146 in aqueous solution and subsequent insertion of acrylate catalyzed by Pd(OAc)2 by the addition of MeOH are carried out as a one-pot reaction, affording the cinnamate 147 in good yield[115]. The A-nitroso-jV-arylacetamide 148 is prepared from acetanilides and used as another precursor of arylpalladium intermediate. It is more reactive than aryl iodides and bromides and reacts with alkenes at 40 °C without addition of a phosphine ligandfl 16]. [Pg.148]

Enone formation-aromatization has been used for the synthesis of 7-hydro-xyalkavinone (716)[456]. The isotlavone 717 was prepared by the elimina-tion[457]. The unsaturated 5-keto allyl esters 718 and 719, obtained in two steps from myreene. were subjected to enone formation. The reaction can be carried out even at room temperature using dinitriles such as adiponitrile (720) or 1,6-dicyanohexane as a solvent and a weak ligand to give the pseudo-ionone isomers 721 and 722 without giving an allylated product(458]. [Pg.389]

Decarbonylation of aromatic aldehydes proceeds smoothly[71], Terephthalic acid (86), commercially produced by the oxidation of p-.xylene (85), contains p-formylbenzoic acid (87) as an impurity, which is removed as benzoic acid (88) by Pd-catalyzed decarbonylation at a high temperature. The benzoic acid produced by the decarbonylation can be separated from terephthalic acid (86) based on the solubility difference in water[72]. [Pg.537]

The main example of a category I indole synthesis is the Hemetsberger procedure for preparation of indole-2-carboxylate esters from ot-azidocinna-mates[l]. The procedure involves condensation of an aromatic aldehyde with an azidoacetate ester, followed by thermolysis of the resulting a-azidocinna-mate. The conditions used for the base-catalysed condensation are critical since the azidoacetate enolate can decompose by elimination of nitrogen. Conditions developed by Moody usually give good yields[2]. This involves slow addition of the aldehyde and 3-5 equiv. of the azide to a cold solution of sodium ethoxide. While the thermolysis might be viewed as a nitrene insertion reaction, it has been demonstrated that azirine intermediates can be isolated at intermediate temperatures[3]. [Pg.45]

Although nucleophilic aromatic substitution by the elimination-addition mecha nism IS most commonly seen with very strong amide bases it also occurs with bases such as hydroxide ion at high temperatures A labeling study revealed that hydroly SIS of chlorobenzene proceeds by way of a benzyne intermediate... [Pg.985]

Ciyst lliz tion. Low temperature fractional crystallization was the first and for many years the only commercial technique for separating PX from mixed xylenes. As shown in Table 2, PX has a much higher freezing point than the other xylene isomers. Thus, upon cooling, a pure soHd phase of PX crystallizes first. Eventually, upon further cooling, a temperature is reached where soHd crystals of another isomer also form. This is called the eutectic point. PX crystals usually form at about —4° C and the PX-MX eutectic is reached at about —68° C. In commercial practice, PX crystallization is carried out at a temperature just above the eutectic point. At all temperatures above the eutectic point, PX is stiU soluble in the remaining Cg aromatics Hquid solution,... [Pg.417]

Mobil s High Temperature Isomerization (MHTI) process, which was introduced in 1981, uses Pt on an acidic ZSM-5 zeoHte catalyst to isomerize the xylenes and hydrodealkylate EB to benzene and ethane (126). This process is particularly suited for unextracted feeds containing Cg aHphatics, because this catalyst is capable of cracking them to light paraffins. Reaction occurs in the vapor phase to produce a PX concentration slightly higher than equiHbrium, ie, 102—104% of equiHbrium. EB conversion is about 40—65%, with xylene losses of about 2%. Reaction conditions ate temperature of 427—460°C, pressure of 1480—1825 kPa, WHSV of 10—12, and a H2/hydtocatbon molar ratio of 1.5—2 1. Compared to the MVPI process, the MHTI process has lower xylene losses and lower formation of heavy aromatics. [Pg.422]

Table 11. Flash Points and Autoignition Temperatures of the Cg Aromatic Compounds... Table 11. Flash Points and Autoignition Temperatures of the Cg Aromatic Compounds...

See other pages where Aromatics temperature is mentioned: [Pg.35]    [Pg.440]    [Pg.35]    [Pg.440]    [Pg.2]    [Pg.114]    [Pg.28]    [Pg.123]    [Pg.343]    [Pg.2419]    [Pg.2496]    [Pg.2543]    [Pg.2827]    [Pg.1059]    [Pg.76]    [Pg.128]    [Pg.35]    [Pg.62]    [Pg.232]    [Pg.75]    [Pg.434]    [Pg.507]    [Pg.69]    [Pg.115]    [Pg.222]   
See also in sourсe #XX -- [ Pg.455 ]




SEARCH



Aromatic polymers, high-temperature

Aromatics Temperature Statistics

Aromatization, temperature programmed

Aromatization, temperature programmed studies

High Temperature Stability of Rigid Aromatic Networks

Melting-point temperature aromatics

Poly high-temperature aromatic polymer

Polyamide, aromatic melting temperature

Semi-aromatic PA examples of half-life (h) versus temperature (C)

© 2024 chempedia.info