Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic diazonium

They are prepared by the action of HNO2 on aromatic amines. The amine is dissolved in excess of mineral acid and sodium nitrite is added slowly until a slight excess of HNO2 is present. The reaction is usually carried out in ice-cold solution. The solution then contains the diazonium salt of the mineral acid used, anhydrous diazonium salts of unpredictable stability may be precipitated with complex anions like PF , SnCl6 BF4 . [Pg.133]

The most important reaction of the diazonium salts is the condensation with phenols or aromatic amines to form the intensely coloured azo compounds. The phenol or amine is called the secondary component, and the process of coupling with a diazonium salt is the basis of manufacture of all the azo dyestuffs. The entering azo group goes into the p-position of the benzene ring if this is free, otherwise it takes up the o-position, e.g. diazotized aniline coupled with phenol gives benzeneazophenol. When only half a molecular proportion of nitrous acid is used in the diazotization of an aromatic amine a diazo-amino compound is formed. [Pg.133]

Gattermann s reaction A variation of the Sandmeyer reaction copper powder and hydrogen halide are allowed to react with the diazonium salt solution and halogen is introduced into the aromatic nucleus in place of an amino group. [Pg.187]

When an aqueous solution of a diazonium salt is added to an alkaline solution of a phenol, coupling occurs with formation of an azo-compound (p. 188). If ho vc cr the ntiueous solution of the diazonium salt, t. . ., />-bromohenzene diazonium chloride, is mixed with an excess of an aromatic hydrocarbon, and aqueous sodium hydroxide then added to the vigorously stirred mixture, the diazotate which is formed, e.g., BrC,H N OH, dissolves in the hydrocarbon and there undergoes decomposition with the formation of nitrogen and two free radicals. The aryl free radical then reacts with the hydrocarbon to give a... [Pg.201]

Diazonium salts couple readily with aromatic primary amines, giving diazoamino compounds. If for instance an aqueous solution of aniline sulphate is diazotised with a deficiency of nitrous acid, only part of it is converted into benzenediazonium sulphate and the latter then couples with the unchanged aniline to give diazoaminobenzene. The reaction is carried out at the opti-CeHsNHj.HjSO + HONO = CbHsNjHSO, + zHaO... [Pg.207]

Primary aromatic amines differ from primary aliphatic amines in their reaction with nitrous acid. Whereas the latter yield the corresponding alcohols (RNHj — ROH) without formation of intermediate products see Section 111,123, test (i), primary aromatic amines 3neld diazonium salts. Thus aniline gives phcnyldiazonium chloride (sometimes termed benzene-diazonium chloride) CjHbNj- +C1 the exact mode of formation is not known, but a possible route is through the phenjdnitrosoammonium ion tlius ... [Pg.590]

The controlled thermal decomposition of dry aromatic diazonium fluoborates to yield an aromatic fluoride, boron trifluoride and nitrogen is known as the Schiemann reaction. Most diazonium fluoborates have definite decomposition temperatures and the rates of decomposition, with few exceptions, are easily controlled. Another procedure for preparing the diazonium fluoborate is to diazotise in the presence of the fluoborate ion. Fluoboric acid may be the only acid present, thus acting as acid and source of fluoborate ion. The insoluble fluoborate separates as it is formed side reactions, such as phenol formation and coupling, are held at a minimum temperature control is not usually critical and the temperature may rise to about 20° without ill effect efficient stirring is, however, necessary since a continuously thickening precipitate is formed as the reaction proceeds. The modified procedure is illustrated by the preparation of -fluoroanisole ... [Pg.594]

The conversion of an aromatic diazonium compound into the corresponding arsonic acid by treatment with sodium arsenite in the presence of a catalyst, such as copper or a copper salt, is called the Bart reaction. A modification of the reaction employs the more stable diazonium fluoborate in place of the diazonium chlorid.i. This is illustrated by the preparation of />-nitrophenylarsonic acid ... [Pg.597]

Unsymmetrical diaryls may be prepared by treating an aryl diazonium salt solution with sodium hydroxide or sodium acetate in the presence of a liquid aromatic compound. Thus 2-chlorodiphenyl is readily formed from o-chloro phenyl diazonium chloride and sodium hydroxide solution (or sodium acetate solution) in the presence of benzene ... [Pg.927]

Some reference to the use of nitrous acid merits mention here. Primary aromatic amines yield diazonium compounds, which may be coupled with phenols to yield highly-coloured azo dyes (see Section IV,100,(iii)). Secondary aromatic amines afford nitroso compounds, which give Liebermann a nitroso reaction Section IV,100,(v). Tertiary aromatic amines, of the type of dimethylaniline, yield p-nitroso derivatives see Section IV,100,(vii). ... [Pg.1073]

The diazonium salts 145 are another source of arylpalladium com-plexes[114]. They are the most reactive source of arylpalladium species and the reaction can be carried out at room temperature. In addition, they can be used for alkene insertion in the absence of a phosphine ligand using Pd2(dba)3 as a catalyst. This reaction consists of the indirect substitution reaction of an aromatic nitro group with an alkene. The use of diazonium salts is more convenient and synthetically useful than the use of aryl halides, because many aryl halides are prepared from diazonium salts. Diazotization of the aniline derivative 146 in aqueous solution and subsequent insertion of acrylate catalyzed by Pd(OAc)2 by the addition of MeOH are carried out as a one-pot reaction, affording the cinnamate 147 in good yield[115]. The A-nitroso-jV-arylacetamide 148 is prepared from acetanilides and used as another precursor of arylpalladium intermediate. It is more reactive than aryl iodides and bromides and reacts with alkenes at 40 °C without addition of a phosphine ligandfl 16]. [Pg.148]

Aryl diazonium ions prepared by nitrous acid diazotization of primary arylamines are substantially more stable than alkyl diazonium ions and are of enormous synthetic value Their use m the synthesis of substituted aromatic compounds is described m the following two sections... [Pg.945]

It IS possible to replace ammo substituents on an aromatic nucleus by hydrogen by reducing a diazonium salt with hypophosphorous acid (H3PO2) or with ethanol These... [Pg.948]

A reaction of aryl diazonium salts that does not involve loss of nitrogen takes place when they react with phenols and arylamines Aryl diazonium ions are relatively weak elec trophiles but have sufficient reactivity to attack strongly activated aromatic rings The reaction is known as azo coupling two aryl groups are joined together by an azo (—N=N—) function... [Pg.950]

Reaction with arenediazonium salts Adding a phe nol to a solution of a diazonium salt formed from a primary aromatic amine leads to formation of an azo compound The reaction is carried out at a pH such that a significant portion of the phenol is pres ent as its phenoxide ion The diazonium ion acts as an electrophile toward the strongly activated ring of the phenoxide ion... [Pg.1004]

R—N=N Aryl diazonium 10ns are formed by treatment of primary aromatic amines with nitrous acid They are ex tremely useful in the preparation of aryl halides phenols and aryl cyanides... [Pg.1281]

Aromatic Ring Fluorination. The formation of an aryl diazonium fluoride salt, followed by decomposition, is a classical reaction (the Schiemaim reaction) for aryl fluoride preparation (21). This method has been adapted to the production-scale manufacture of fluorobenzene [462-06-6]... [Pg.269]

Aromatic Hydrazines. A general synthesis for aryUiydraziaes is via diazotization of aromatic amines, followed by reduction of the resulting diazonium salt (18) ... [Pg.279]

Analytical and Test Methods. o-Nitrotoluene can be analyzed for purity and isomer content by infrared spectroscopy with an accuracy of about 1%. -Nitrotoluene content can be estimated by the decomposition of the isomeric toluene diazonium chlorides because the ortho and meta isomers decompose more readily than the para isomer. A colorimetric method for determining the content of the various isomers is based on the color which forms when the mononitrotoluenes are dissolved in sulfuric acid (45). From the absorption of the sulfuric acid solution at 436 and 305 nm, the ortho and para isomer content can be deterrnined, and the meta isomer can be obtained by difference. However, this and other colorimetric methods are subject to possible interferences from other aromatic nitro compounds. A titrimetric method, based on the reduction of the nitro group with titanium(III) sulfate or chloride, can be used to determine mononitrotoluenes (32). Chromatographic methods, eg, gas chromatography or high pressure Hquid chromatography, are well suited for the deterrnination of mononitrotoluenes as well as its individual isomers. Freezing points are used commonly as indicators of purity of the various isomers. [Pg.70]

Reaction with Nitrous Acid. Primary, secondary, and tertiary aromatic amines react with nitrous acid to form a variety of products. Primary aromatic amines form diazonium salts. ... [Pg.230]

Aiomatic aisonic acids aie generally prepared by tiie Bart reaction from an aromatic diazonium salt and sodium arsenite ... [Pg.337]

Fast Color Salts. In order to simplify the work of the dyer, diazonium salts, in the form of stable dry powders, were introduced under the name of fast color salts. When dissolved in water they react like ordinary diazo compounds. These diazonium salts, derived from amines, free from solubilizing groups, are prepared by the usual method and are salted out from the solutions as the sulfates, the metallic double salts, or the aromatic sulfonates. The isolated diazonium salt is sold in admixture with anhydrous salts such as sodium sulfate or magnesium sulfate. [Pg.445]

Synthesis. Almost without exception, azo dyes ate made by diazotization of a primary aromatic amine followed by coupling of the resultant diazonium salt with an electron-rich nucleophile. The diazotization reaction is carried out by treating the primary aromatic amine with nitrous acid, normally generated in situ with hydrochloric acid and sodium nitrite. The nitrous acid nitrosates the amine to generate the N-nitroso compound, which tautomerizes to the diazo hydroxide. [Pg.273]

A diazonium salt is a weak electrophile, and thus reacts only with highly electron-rich species such as amino and hydroxy compounds. Even hydroxy compounds must be ionized for reaction to occur. Consequendy, hydroxy compounds such as phenols and naphthols are coupled in an alkaline medium (pH > of phenol or naphthol typically pH 7—11), whereas aromatic amines such as N,N diaLkylamines are coupled in a slightly acid medium, typically pH 1—5. This provides optimum stabiUty for the dia2onium salt (stable in acid) without deactivating the nucleophile (protonation of the amine). [Pg.273]

The aza-transfer reaction between 3-hydrazinopyridazines and aromatic diazonium salts or heterocyclic diazo compounds affords the corresponding tetrazolo[l,5-6]pyridazines, while 3-hydrazinopyridazine 1-oxide gives 3-azidopyridazine 1-oxide (76TL3193, 76X725). [Pg.35]

In the presence of proton-donative organic solvents (alcohols), aliphatic amines do not react with diazonium, whereas aromatic amines form mainly triazenes and also para-aminoazo compounds, which subsequently interact slowly with an excess of diazo reagent via N-coupling and form disazo derivatives. [Pg.62]

Substitution of an aromatic amino group by fluorine via a diazonium salt using fluoroborates... [Pg.21]

DUTT - WORMALL Azide formation Synthesis of aromatic azides from anilines via diazonium salts. [Pg.102]

Oeaminalion of aromatic amines via diazonium sails, by means of alcohols (Griess), or PO2H3, Sn(OH)2, etc. [Pg.151]

Among the reagents that are classified as weak electrophiles, the best studied are the aromatic diazonium ions, which reagents react only with aromatic substrates having strong electron-donor substituents. The products are azo compounds. The aryl diazonium ions are usually generated by diazotization of aromatic amines. The mechanism of diazonium ion formation is discussed more completely in Section 11.2.1 of Part B. [Pg.587]


See other pages where Aromatic diazonium is mentioned: [Pg.28]    [Pg.49]    [Pg.280]    [Pg.351]    [Pg.591]    [Pg.403]    [Pg.946]    [Pg.950]    [Pg.951]    [Pg.561]    [Pg.230]    [Pg.310]    [Pg.425]    [Pg.426]    [Pg.427]    [Pg.263]    [Pg.530]    [Pg.551]    [Pg.677]    [Pg.81]   
See also in sourсe #XX -- [ Pg.240 ]




SEARCH



Aromatic Amines and Diazonium Salts

Aromatic Diazonium Ions as Synthetic Intermediates

Aromatic Substitution by Diazonium Ions

Aromatic Substitution of Anilines via Diazonium Salts

Aromatic compounds diazonium salts

Aromatic compounds from aryl diazonium salts

Aromatic compounds from diazonium salts

Aromatic coupling diazonium salt

Aromatic diazonium compounds

Aromatic diazonium salt

Aromatic diazonium salts, reaction with

Aromatic diazonium tetrafluoroborates

Aromatic substitution diazonium ions

Aromatic substitution via diazonium ions

Diazonium ions, aromatic

Diazonium ions, aromatic azides

Diazonium ions, aromatic fluorides

Diazonium ions, aromatic halides

Diazonium ions, aromatic iodides

Diazonium ions, aromatic phenols

Diazonium ions, aromatic reductive

Diazonium ions, aromatic substitution reactions

Diazonium salts aryl, reaction with aromatic compounds

Diazonium salts with aromatic compounds

Diazonium salts, coupling from aromatic compounds

Diazonium salts, coupling nucleophilic aromatic

Diazonium salts, coupling with aromatic compounds

Diazonium salts, with nitrite anion, aromatic

Electrophilic aromatic substitution diazonium coupling

Electrophilic aromatic substitution reaction diazonium coupling

Nucleophilic Aromatic Substitution Diazonium Ions

Nucleophilic aromatic substitution reactions diazonium ions

Nucleophilic substitution, aromatic diazonium salts

Other Reactions Involving Formation of Aromatic Diazonium Ions

Reaction XLIX.—(a) Action of Cuprous Potassium Cyanide on Aromatic Diazonium Compounds (Sandmeyer)

Reaction of aromatic diazonium salts with metal and metalloid halides or oxides in aqueous solution

Synthesis via coupling aromatic diazonium salts with carbon nucleophilic 4 atom fragments

The Aromatic Diazonium Ion as a Dibasic Acid

© 2024 chempedia.info