Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium reactions with

Leuckart reaction The conversion of ketones and aromatic aldehyde,s to primary amines by reaction with ammonium methanoale at a high temperature. [Pg.238]

Aqueous solutions (when obtainable) give no reaction with ferric chloride. This is an important distinction from ammonium salts (sec above). Salicylamide, being also a phenol, is however an exception (p. 344). [Pg.360]

The reaction commences at about 120° the carbamic acid formed decomposes immediately into carbon dioxide and ammonia. The latter may form the ammonium salt with unreacted acid the ammonium salt also reacts with urea at temperatures above 120° to yield the amide ... [Pg.401]

The formation of ethyl isopropylidene cyanoacetate is an example of the Knoevenagel reaction (see Discussion before Section IV,123). With higher ketones a mixture of ammonium acetate and acetic acid is an effective catalyst the water formed is removed by azeotropic distillation with benzene. The essential step in the reaction with aqueous potassium cyanide is the addition of the cyanide ion to the p-end of the ap-double bond ... [Pg.490]

Reaction with chlorosulphonic acid ( chlorosulphonyl-ation ). Sulphonamides. Many aryl hahdes, either alone or in chloroform solution, when treated with excess of chlorosulphonic acid afford the corresponding sulphonyl chlorides in good yield (compare Section IV.106) the latter may be readily converted into the aryl sulphonamides by reaction with concentrated ammonia solution or with sohd ammonium carbonate. [Pg.543]

Hantzsch and Weber began their description with the compound which led them indirectly to the discovery of the thiazoles the a-thiocyanoacetone imine ( Rhodanpropimin ) of J. Tcherniac and C. H. Norton. C4H6N2S. obtained by reaction of ammonium thiocyanate with chloroacetone. After Tcherniac and Norton (18), the a thiocyanoacetone... [Pg.8]

In 1891, Miolati (75) confirmed the cyclic formula of Liebermann and Lange by preparing the compound by three new pathways (1) reaction of CS2 on thiohydantoin, (2) condensation of ammonium dithiocarbamate with chloroacetic ester, (3) reaction of HjS on thiocyanoacetic acid. [Pg.19]

Polythiodipropionic acids and their esters are prepared from acryUc acid or an acrylate with sulfur, hydrogen sulfide, and ammonium polysulfide (32). These polythio compounds are converted to the dithio analogs by reaction with an inorganic sulfite or cyanide. [Pg.151]

Amidation. Heating of the diammonium salt or reaction of the dimethyl ester with concentrated ammonium hydroxide gives adipamide [628-94-4] mp 228°C, which is relatively insoluble in cold water. Substituted amides are readily formed when amines are used. The most industrially significant reaction of adipic acid is its reaction with diamines, specifically 1,6-hexanediamine. A water-soluble polymeric salt is formed initially upon mixing solutions of the two materials then hea ting with removal of water produces the polyamide, nylon-6,6. This reaction has been studied extensively, and the hterature contains hundreds of references to it and to polyamide product properties (31). [Pg.240]

In the commonly used Welland process, calcium cyanamide, made from calcium carbonate, is converted to cyanamide by reaction with carbon dioxide and water. Dicyandiamide is fused with ammonium nitrate to form guanidine nitrate. Dehydration with 96% sulfuric acid gives nitroguanidine which is precipitated by dilution. In the aqueous fusion process, calcium cyanamide is fused with ammonium nitrate ia the presence of some water. The calcium nitrate produced is removed by precipitation with ammonium carbonate or carbon dioxide. The filtrate contains the guanidine nitrate that is recovered by vacuum evaporation and converted to nitroguanidine. Both operations can be mn on a continuous basis (see Cyanamides). In the Marquerol and Loriette process, nitroguanidine is obtained directly ia about 90% yield from dicyandiamide by reaction with sulfuric acid to form guanidine sulfate followed by direct nitration with nitric acid (169—172). [Pg.16]

Oxidizers. The characteristics of the oxidizer affect the baUistic and mechanical properties of a composite propellant as well as the processibihty. Oxidizers are selected to provide the best combination of available oxygen, high density, low heat of formation, and maximum gas volume in reaction with binders. Increases in oxidizer content increase the density, the adiabatic flame temperature, and the specific impulse of a propellant up to a maximum. The most commonly used inorganic oxidizer in both composite and nitroceUulose-based rocket propellant is ammonium perchlorate. The primary combustion products of an ammonium perchlorate propellant and a polymeric binder containing C, H, and O are CO2, H2, O2, and HCl. Ammonium nitrate has been used in slow burning propellants, and where a smokeless exhaust is requited. Nitramines such as RDX and HMX have also been used where maximum energy is essential. [Pg.39]

Ammonia—Gas-Cured Flame Retardants. The first flame-retardant process based on curing with ammonia gas, ie, THPC—amide—NH, consisted of padding cotton with a solution containing THPC, TMM, and urea. The fabric was dried and then cured with either gaseous ammonia or ammonium hydroxide (96). There was Httle or no reaction with cellulose. A very stable polymer was deposited in situ in the cellulose matrix. Because the fire-retardant finish did not actually react with the cellulose matrix, there was generally Httle loss in fabric strength. However, the finish was very effective and quite durable to laundering. [Pg.489]

Ammonium fluorosulfate is produced from ammonium fluoride by reaction with sulfur trioxide, oleum, or potassium pyrosulfate, 1 2820 (48). Solutions of ammonium fluorosulfate show Htfle evidence of hydrolysis and the salt may be recrystallized from hot water. Ammonium fluorosulfate absorbs anhydrous ammonia to form a series of Hquid amines that contain 2.5—6 moles of ammonia per mole of salt (77). [Pg.250]

Methanol can be converted to a dye after oxidation to formaldehyde and subsequent reaction with chromatropic acid [148-25-4]. The dye formed can be deterruined photometrically. However, gc methods are more convenient. Ammonium formate [540-69-2] is converted thermally to formic acid and ammonia. The latter is trapped by formaldehyde, which makes it possible to titrate the residual acid by conventional methods. The water content can be determined by standard Kad Eischer titration. In order to determine iron, it has to be reduced to the iron(II) form and converted to its bipyridyl complex. This compound is red and can be determined photometrically. Contamination with iron and impurities with polymeric hydrocyanic acid are mainly responsible for the color number of the merchandized formamide (<20 APHA). Hydrocyanic acid is detected by converting it to a blue dye that is analyzed and deterruined photometrically. [Pg.509]

Iron hahdes react with haHde salts to afford anionic haHde complexes. Because kon(III) is a hard acid, the complexes that it forms are most stable with F and decrease ki both coordination number and stabiHty with heavier haHdes. No stable F complexes are known. [FeF (H20)] is the predominant kon fluoride species ki aqueous solution. The [FeF ] ion can be prepared ki fused salts. Whereas six-coordinate [FeCy is known, four-coordinate complexes are favored for chloride. Salts of tetrahedral [FeCfy] can be isolated if large cations such as tetraphenfyarsonium or tetra alkylammonium are used. [FeBrJ is known but is thermally unstable and disproportionates to kon(II) and bromine. Complex anions of kon(II) hahdes are less common. [FeCfy] has been obtained from FeCfy by reaction with alkaH metal chlorides ki the melt or with tetraethyl ammonium chloride ki deoxygenated ethanol. [Pg.436]

The NaAlCl formed in this process needs to be removed by washing with water, in order to achieve the desired improved stabiUty. A more convenient method for replacing framework-Al with Si is the reaction with ammonium hexafluorosiUcate (35). [Pg.451]

In a reversal of the reaction with SiCl, aluminum can be introduced into the framework by reaction of the hydrogen or ammonium form with gaseous AlCl (36). Similarly, reaction with aqueous ammonium fluoroaluminates replaces framework-Si with Al (37). When alumina-bound high siUca 2eohtes are hydrothermaHy treated, aluminum migrates into framework positions and generates catalyticaHy active acid sites (38). The reaction can be accelerated by raising the pH of the aqueous phase. [Pg.451]

Acidic Properties. As a typical acid, it reacts readily with alkaUes, basic oxides, and carbonates to form salts. The largest iadustrial appHcation of nitric acid is the reaction with ammonia to produce ammonium nitrate. However, because of its oxidising nature, nitric acid does not always behave as a typical acid. Bases having metallic radicals ia a reduced state (eg, ferrous and staimous hydroxide becoming ferric and stannic salts) are oxidized by nitric acid. Except for magnesium and manganese ia very dilute acid, nitric acid does not Hberate hydrogen upon reaction with metals. [Pg.39]

Perchloric acid can be prepared by the treatment of perchlorates with sulfuric acid followed by distillation. A modification of the procedure (21) involves the reaction of ammonium perchlorate with nitric and hydrochloric acids, and then concentration at 198—200°C to eliminate the unreacted acids by vacuum distillation ... [Pg.65]

Inositols, ie, hexaliydrobenzenehexols, are sugars that have received increasing study and are useful in the treatment of a wide variety of human disorders, including vascular disease, cancer, cirrhosis of the Hver, frostbite, and muscular dystrophy (269). Myoinositol esters prepared by reaction with lower fatty acid anhydrides are useful as Hver medicines and nonionic surfactants the aluminum and ammonium salts of inositol hexasulfate are useful anticancer agents (270). Tetraarjloxybenzoquinones are intermediates in the preparation of dioxazine dyes (266,271). The synthesis of hexakis(aryloxy)benzenes has also beenpubUshed (272). [Pg.391]

Analytical methods iaclude thin-layer chromatography (69), gas chromatography (70), and specific methods for determining amine oxides ia detergeats (71) and foods (72). Nuclear magnetic resonance (73—75) and mass spectrometry (76) have also been used. A frequentiy used procedure for iadustrial amine oxides (77) iavolves titratioa with hydrochloric acid before and after conversion of the amine to the quaternary ammonium salt by reaction with methyl iodide. A simple, rapid quaHty control procedure has been developed for the deterrniaation of amine oxide and unreacted tertiary amine (78). [Pg.192]

Ammonia is consumed in the manufacture of ammonium phosphates and ammonium sulfate by reaction with phosphoric acid and sulfuric acid, respectively. The phosphates may contain ortho- and polyphosphate values. Ammonium sulfate is also a by-product from other ammonia-using industries such as caprolactam (qv) and hydrogen cyanide (see Cyanides). [Pg.358]

The gaseous ammonia is passed through electrostatic precipitators for particulate removal and mixed with the cooled gas stream. The combined stream flows to the ammonia absorber where the ammonia is recovered by reaction with a dilute solution of sulfuric acid to form ammonium sulfate. Ammonium sulfate precipitates as small crystals after the solution becomes saturated and is withdrawn as a slurry. The slurry is further processed in centrifuge faciHties for recovery. Crystal size can be increased by employing one of two processes (99), either low differential controUed crystallization or mechanical size enlargement by continuous compacting and granulation. [Pg.359]

A.mmonium Sulfate—Sodium Chloride Process. Ammonium sulfate, a readily available by-product, has been much used to make ammonium chloride by a double decomposition reaction with sodium chloride. [Pg.364]

Carbonyl Compounds. Cychc ketals and acetals (dioxolanes) are produced from reaction of propylene oxide with ketones and aldehydes, respectively. Suitable catalysts iaclude stannic chloride, quaternary ammonium salts, glycol sulphites, and molybdenum acetyl acetonate or naphthenate (89—91). Lactones come from Ph4Sbl-cataly2ed reaction with ketenes (92). [Pg.135]

Qualitative. The classic method for the quaUtative determination of silver ia solution is precipitation as silver chloride with dilute nitric acid and chloride ion. The silver chloride can be differentiated from lead or mercurous chlorides, which also may precipitate, by the fact that lead chloride is soluble ia hot water but not ia ammonium hydroxide, whereas mercurous chloride turns black ia ammonium hydroxide. Silver chloride dissolves ia ammonium hydroxide because of the formation of soluble silver—ammonia complexes. A number of selective spot tests (24) iaclude reactions with /)-dimethy1amino-henz1idenerhodanine, ceric ammonium nitrate, or bromopyrogaHol red [16574-43-9]. Silver is detected by x-ray fluorescence and arc-emission spectrometry. Two sensitive arc-emission lines for silver occur at 328.1 and 338.3 nm. [Pg.91]

Quaternary ammonium alkyl ethers are prepared similarly an alkaline starch is reacted with a quaternary ammonium salt containing a 3-chloto-2-hydtoxyptopyl or 2,3-epoxyptopyl radical. Alternatively, such derivatives can be prepared by simple quaternization of tertiary aminoalkyl ethers by reaction with methyl iodide. Sulfonium (107) and phosphonium (108) starch salts have also been prepared and investigated. Further work has explained the synthesis of diethyl aminoethyl starch (109) as well as the production of cationic starches from the reaction of alkaline starch with... [Pg.345]

Sulfamic acid readily forms various metal sulfamates by reaction with the metal or the respective carbonates, oxides, or hydroxides. The ammonium salt is formed by neutralizing the acid with ammonium hydroxide ... [Pg.61]

Sulfation by sulfamic acid has been used ia the preparation of detergents from dodecyl, oleyl, and other higher alcohols. It is also used ia sulfating phenols and phenol—ethylene oxide condensation products. Secondary alcohols react ia the presence of an amide catalyst, eg, acetamide or urea (24). Pyridine has also been used. Tertiary alcohols do not react. Reactions with phenols yield phenyl ammonium sulfates. These reactions iaclude those of naphthols, cresol, anisole, anethole, pyrocatechol, and hydroquinone. Ammonium aryl sulfates are formed as iatermediates and sulfonates are formed by subsequent rearrangement (25,26). [Pg.62]

Manufacture. Ammonium thiosulfate has been produced by the reaction of ammonium sulfite with sulfur, sulfides, or polysulfides ... [Pg.31]


See other pages where Ammonium reactions with is mentioned: [Pg.258]    [Pg.379]    [Pg.223]    [Pg.988]    [Pg.47]    [Pg.344]    [Pg.395]    [Pg.41]    [Pg.208]    [Pg.215]    [Pg.512]    [Pg.516]    [Pg.331]    [Pg.169]    [Pg.127]    [Pg.197]    [Pg.347]    [Pg.199]   


SEARCH



2,3-Butanedione, reaction with ammonium sulfide

2,3-Pentanedione, reaction with ammonium sulfide

Aluminum reaction with ammonium perchlorate

Amide bases reaction with ammonium salts

Amide, sodium reaction with ammonium salts

Amides reaction with ammonium salts

Ammonia reaction with ammonium

Ammonium acetate, reaction with

Ammonium acetate, reaction with ketones

Ammonium cerium nitrate, reaction with

Ammonium chloride reaction with ammonia

Ammonium chloride reaction with calcium

Ammonium chloride, 523 reaction with barium hydroxide octahydrate

Ammonium fluoride, benzyltrimethylcatalyst allylsilane reactions with aldehydes

Ammonium fluoride, r-butylcatalyst allylsilane reactions with aldehydes

Ammonium fluoride, tetrabutylcatalyst enol silane reaction with aldehydes

Ammonium hydrogencarbonate, reactions with

Ammonium hydroxide, reaction with

Ammonium hydroxide, reaction with epoxides

Ammonium molybdate, reaction with

Ammonium perchlorates reactions with

Ammonium salts reaction with urea

Ammonium sulfate reaction with lead nitrate

Ammonium thiocyanate reaction with

Ammonium thiocyanate, reaction with barium hydroxide

Ammonium titanium fluoride reaction with

Ammonium titanium fluoride reaction with zeolites

Barium hydroxide reaction with ammonium

Calcium hydroxide reaction with ammonium

Ceric ammonium nitrate, reaction with epoxides

Cesium with ammonium, bromide, reaction

Dimethyl ammonium perchlorate, reaction with

Nitric acid ammonium formate, reaction with

Paraformaldehyde, reaction with ammonium

Reaction ammonium

Reaction with ammonium bifluoride

Reaction with ammonium halides

Reaction with ammonium hydrogen carbonate

Reaction with ammonium salts

Reactions of Chiral Ammonium Ketene Enolates as Nucleophiles with Different Electrophiles

Ritter-type Reaction with Cerium Ammonium Nitrate (CAN)

Sulfur dichloride, reaction with ammonium

Sulfur dichloride, reaction with ammonium chloride

© 2024 chempedia.info