Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compounds product

Many herbicides and other chemicals have been reported to influence levels of various phenolic compounds in higher plants by unknown mechanisms. It is unlikely that more than a few of these compounds have a primary influence on secondary phenolic compound synthesis. For instance, in our survey of the effects of 17 herbicides on anthocyanin accumulation, only glyphosate appeared to directly influence accumulation (31). The effects of several compounds on secondary phenolic compound production for which the mechanism of influence is unknown are summarized in Table II. A much longer list could be derived from the literature. Unfortunately, many of these compounds are phytotoxic or are known to have effects other than on secondary aromatic compound production. In most cases the effects on these compounds correlate well with extractable PAL activity (31, 71, 72, 73, 74) (Figure 5), even though they do not directly affect the enzyme. [Pg.123]

Alkenes. Products can be explosive.4 9 Aromatic Compounds. Products can be explosive.10... [Pg.419]

Hernandez-Orte, R, Bely M., Cacho, J., Ferreira, V. (2006) Impact of ammonium additions on volatile acidity ethanol, and aromatic compound production by different Saccharomyces cerevisiae strains during fermentation in controlled synthetic media. Australian Journal of Grape and Wine Research, 12, 150-160. [Pg.381]

Entry Aromatic Compound Product Conv. (%) > Selectivity (%) Conv. (%) Seiectivity (%) ... [Pg.256]

Note Reagents for TM 2.15a and 2.15b are available aromatic compounds, products of the petrochemical industry. Para-nitrobenzoic acid is produced by nitration of toluene to para-isomer as the prevailing product, followed by oxidation of methyl to the carboxylic group. Orf/m-dimethoxybenzene is produced from ort/to-diphenol, which in turn is available by oxidation of phenol. One technological process uses hydrogen peroxide as oxidant [25], and annual production of ort/io-diphenol reaches 20,000 tons/year, mainly intended for the production of pesticides and perfumes. [Pg.44]

The biosynthesis of patulin, as well as that of penicillic acid, can be summarized as acetate aromatic compound -> product. In this section we will concentrate on the first step the origin of the aromatic precursor. [Pg.237]

It is a typically aromatic compound and gives addition and substitution reactions more readily than benzene. Can be reduced to a series of compounds containing 2-10 additional hydrogen atoms (e.g. tetralin, decalin), which are liquids of value as solvents. Exhaustive chlorination gives rise to wax-like compounds. It gives rise to two series of monosubstitution products depending upon... [Pg.269]

In practice superheated steam is generally employed for substances with a low vapour pressure (< 5-1 mm.) at 100°. Thus in the recovery of the products of nitration or aromatic compounds, the ortho derivative e.g., o-nitrophenol) can be removed by ordinary steam distillation the... [Pg.16]

With simple aromatic compounds, appreciable quantities of the corresponding ethyl ethers are formed as by-products ... [Pg.596]

Nitration at a rate independent of the concentration of the compound being nitrated had previously been observed in reactions in organic solvents ( 3.2.1). Such kinetics would be observed if the bulk reactivity of the aromatic towards the nitrating species exceeded that of water, and the measured rate would then be the rate of production of the nitrating species. The identification of the slow reaction with the formation of the nitronium ion followed from the fact that the initial rate under zeroth-order conditions was the same, to within experimental error, as the rate of 0-exchange in a similar solution. It was inferred that the exchange of oxygen occurred via heterolysis to the nitronium ion, and that it was the rate of this heterolysis which limited the rates of nitration of reactive aromatic compounds. [Pg.11]

Expt. ig. The aromatic compound was added to a freshly prepared solution of nitric acid in acetic anhydride. The reaction was very fast ( < i min.) About 2 % of an acetoxy-lated product was formed (table 5.4). [Pg.101]

Remembering that the observed second-order rate constant is merely the rate divided by the product of the stoichiometric concentrations of aromatic compound and nitric acid, the following relationship can be... [Pg.147]

The Pd—C cr-bond can be prepared from simple, unoxidized alkenes and aromatic compounds by the reaction of Pd(II) compounds. The following are typical examples. The first step of the reaction of a simple alkene with Pd(ll) and a nucleophile X or Y to form 19 is called palladation. Depending on the nucleophile, it is called oxypalladation, aminopalladation, carbopalladation, etc. The subsequent elimination of b-hydrogen produces the nucleophilic substitution product 20. The displacement of Pd with another nucleophile (X) affords the nucleophilic addition product 21 (see Chapter 3, Section 2). As an example, the oxypalladation of 4-pentenol with PdXi to afford furan 22 or 23 is shown. [Pg.13]

Palladation of aromatic compounds with Pd(OAc)2 gives the arylpalladium acetate 25 as an unstable intermediate (see Chapter 3, Section 5). A similar complex 26 is formed by the transmetallation of PdX2 with arylmetal compounds of main group metals such as Hg Those intermediates which have the Pd—C cr-bonds react with nucleophiles or undergo alkene insertion to give oxidized products and Pd(0) as shown below. Hence, these reactions proceed by consuming stoichiometric amounts of Pd(II) compounds, which are reduced to the Pd(0) state. Sometimes, but not always, the reduced Pd(0) is reoxidized in situ to the Pd(II) state. In such a case, the whole oxidation process becomes a catalytic cycle with regard to the Pd(II) compounds. This catalytic reaction is different mechanistically, however, from the Pd(0)-catalyzed reactions described in the next section. These stoichiometric and catalytic reactions are treated in Chapter 3. [Pg.14]

The transmetallation of various organometallic compounds (Hg, Tl, Sn, B, Si, etc.) with Pd(II) generates the reactive cr-aryl, alkenyl, and alkyl Pd compounds. These carbopalladation products can be used without isolation for further reactions. Pd(II) and Hg(II) salts have similar reactivity toward alkenes and aromatic compounds, but Hg(II) salts form stable mercuration products with alkenes and aromatic rings. The mercuration products are isolated and handled easily. On the other hand, the corresponding palladation products are too reactive to be isolated. The stable mercuration products can be used for various reactions based on facile transmetallation with Pd(II) salts to generate the very reactive palladation products 399 and 400 in rim[364,365]. [Pg.79]

Under different conditions [PdfOAcj2, K2CO3, flu4NBr, NMP], the 1 3 coupling product 86 with 4-aryl-9,10-dihydrophenanthrene units was obtained. The product 86 was transformed into a variety of polycyclic aromatic compounds such as 87 and 88[83], The polycyclic heteroarene-annulated cyclopen-tadicnc 90 is prepared by the coupling of 3-iodopyridine and dicyclopentadiene (89), followed by retro-Diels Alder reaction on thermolysis[84]. [Pg.141]

Because acylation of an aromatic ring can be accomplished without rearrangement it is frequently used as the first step m a procedure for the alkylation of aromatic compounds by acylation-reduction As we saw m Section 12 6 Friedel-Crafts alkylation of ben zene with primary alkyl halides normally yields products having rearranged alkyl groups as substituents When a compound of the type ArCH2R is desired a two step sequence IS used m which the first step is a Friedel-Crafts acylation... [Pg.486]

Hydrogenation of the aromatic ring to form naphthenic compounds has been proposed as a route to faciUtate the separation of the Cg aromatic isomers (31). The spread in boiling points of the naphthenic compounds is 12°C vs a spread of 8°C for the aromatic compounds. However, the cycloparaffinic products obtained from OX and EB boil only 3°C apart, impeding the separation. [Pg.414]

The aromatic core or framework of many aromatic compounds is relatively resistant to alkylperoxy radicals and inert under the usual autoxidation conditions (2). Consequentiy, even somewhat exotic aromatic acids are resistant to further oxidation this makes it possible to consider alkylaromatic LPO as a selective means of producing fine chemicals (206). Such products may include multifimctional aromatic acids, acids with fused rings, acids with rings linked by carbon—carbon bonds, or through ether, carbonyl, or other linkages (279—287). The products may even be phenoUc if the phenoUc hydroxyl is first esterified (288,289). [Pg.344]

Cyclic Hydrocarbons. The cyclic hydrocarbon intermediates are derived principally from petroleum and natural gas, though small amounts are derived from coal. Most cycHc intermediates are used in the manufacture of more advanced synthetic organic chemicals and finished products such as dyes, medicinal chemicals, elastomers, pesticides, and plastics and resins. Table 6 details the production and sales of cycHc intermediates in 1991. Benzene (qv) is the largest volume aromatic compound used in the chemical industry. It is extracted from catalytic reformates in refineries, and is produced by the dealkylation of toluene (qv) (see also BTX Processing). [Pg.367]

The accepted configuration of naphthalene, ie, two fused benzene rings sharing two common carbon atoms in the ortho position, was estabUshed in 1869 and was based on its oxidation product, phthaUc acid (1). Based on its fused-ring configuration, naphthalene is the first member in a class of aromatic compounds with condensed nuclei. Naphthalene is a resonance hybrid ... [Pg.480]

Rubbers. Plasticizers have been used in mbber processing and formulations for many years (8), although phthaHc and adipic esters have found Htde use since cheaper alternatives, eg, heavy petroleum oils, coal tars, and other predominandy hydrocarbon products, are available for many types of mbber. Esters, eg, DOA, DOP, and DOS, can be used with latex mbber to produce large reductions in T. It has been noted (9) that the more polar elastomers such as nitrile mbber and chloroprene are insufficiendy compatible with hydrocarbons and requite a more specialized type of plasticizer, eg, a phthalate or adipate ester. Approximately 50% of nitrile mbber used in Western Europe is plasticized at 10—15 phr (a total of 5000—6000 t/yr), and 25% of chloroprene at ca 10 phr (ca 2000 t/yr) is plasticized. Usage in other elastomers is very low although may increase due to toxicological concerns over polynuclear aromatic compounds (9). [Pg.129]

The close electrochemical relationship of the simple quinones, (2) and (3), with hydroquinone (1,4-benzenediol) (4) and catechol (1,2-benzenediol) (5), respectively, has proven useful in ways extending beyond their offering an attractive synthetic route. Photographic developers and dye syntheses often involve (4) or its derivatives (10). Biochemists have found much interest in the interaction of mercaptans and amino acids with various compounds related to (3). The reversible redox couple formed in many such examples and the frequendy observed quinonoid chemistry make it difficult to avoid a discussion of the aromatic reduction products of quinones (see Hydroquinone, resorcinol, and catechol). [Pg.403]

The addition product, C QHgNa, called naphthalenesodium or sodium naphthalene complex, may be regarded as a resonance hybrid. The ether is more than just a solvent that promotes the reaction. StabiUty of the complex depends on the presence of the ether, and sodium can be Hberated by evaporating the ether or by dilution using an indifferent solvent, such as ethyl ether. A number of ether-type solvents are effective in complex preparation, such as methyl ethyl ether, ethylene glycol dimethyl ether, dioxane, and THF. Trimethyl amine also promotes complex formation. This reaction proceeds with all alkah metals. Other aromatic compounds, eg, diphenyl, anthracene, and phenanthrene, also form sodium complexes (16,20). [Pg.163]

Styrene undergoes many reactions of an unsaturated compound, such as addition, and of an aromatic compound, such as substitution (2,8). It reacts with various oxidising agents to form styrene oxide, ben2aldehyde, benzoic acid, and other oxygenated compounds. It reacts with benzene on an acidic catalyst to form diphenylethane. Further dehydrogenation of styrene to phenylacetylene is unfavorable even at the high temperature of 600°C, but a concentration of about 50 ppm of phenylacetylene is usually seen in the commercial styrene product. [Pg.477]


See other pages where Aromatic compounds product is mentioned: [Pg.69]    [Pg.194]    [Pg.66]    [Pg.66]    [Pg.92]    [Pg.69]    [Pg.194]    [Pg.66]    [Pg.66]    [Pg.92]    [Pg.42]    [Pg.569]    [Pg.534]    [Pg.27]    [Pg.87]    [Pg.84]    [Pg.124]    [Pg.132]    [Pg.274]    [Pg.555]    [Pg.557]    [Pg.397]    [Pg.446]    [Pg.449]    [Pg.504]    [Pg.230]    [Pg.525]    [Pg.477]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Aromatic products

Aromatic products production

Aromatics production

Product aromatization

© 2024 chempedia.info