Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical aminium

Although Otsu et al. [12] have studied the BPO-DMA system by electron spin resonance (ESR) technique and trapped the aminomethyl radical, there is still a lack of direct proof of the above second step, particularly concerning the behavior of the aminium radical salt. We [13] have proposed the aminium radical salt with purple color through this reaction of DMT with CCI4 in the presence of O2 following the displacement reaction as ... [Pg.228]

This aminium radical salt in aqueous solution in the form of solvated radical salt is very stable and will not polymerize acrylonitrile even with CeHsCOONa to form the corresponding benzoate. Therefore, we believe that in the nucleophilic displacement, there must be some intermediate step, such as intimate ion pair and cyclic transition state, which will then proceed the deprotonation to form the active aminium radical ion [14], as shown in Scheme 1. The presence of the above aminomethyl radical has also been verified [15] through ultraviolet (UV) analysis of this polymer formed such as PAN or PMMA with the characteristic band as the end group. [Pg.228]

Formation of an intimate ion pair of OH " and aminium radical cation was also proposed for the intermediate step before deprotonation. The presence of the above radical was verified through UV analysis of the polymer formed with the characteristic band on the end group. Through chromatographic analysis of the TBH-DMT reaction products, H2O was detected as the above mechanism proposes after deprotonation. [Pg.232]

Systems of aminium radical as the intermediate step and depro- ... [Pg.234]

The process for initiating radical formation in aromatic amine-vinyl monomer systems have been studied by Feng et al. [80-86] who proposed the formation of an aminium radical as the active state of an exciplex as intimate ion-pair and then a cyclic transition state which then would undergo a proton transfer process of deprotonation leading to the formation of active radical species for initiation as follows ... [Pg.238]

Thus, deprotonation of the aminium radical from a secondary or primary amine will at last form an amino radical instead of an aminoalkyl radical and a CH2CH2CN radical. This amino radical will then serve as one of the active species for the initiation of polymerization. [Pg.239]

The end group of the polymers, photoinitiated with aromatic amine with or without the presence of carbonyl compound BP, has been detected with absorption spectrophotometry and fluororescence spectrophotometry [90]. The spectra showed the presence of tertiary amino end group in the polymers initiated with secondary amine such as NMA and the presence of secondary amino end group in the polymers initiated with primary amine such as aniline. These results show that the amino radicals, formed through the deprotonation of the aminium radical in the active state of the exciplex from the primary or secondary aromatic amine molecule, are responsible for the initiation of the polymerization. [Pg.239]

Tertiary (and to a lesser extent, secondary) aromatic amines can also be prepared in moderate to high yields by amination with an N-chlorodialkylamine (or an N-chloroalkylamine) and a metallic-ion catalyst (e.g., Fe, Ti, Cu, Cr ) in the presence of sulfuric acid. The attacking species in this case is the aminium radical ion R2NH- formed by ... [Pg.701]

For a review of aminium radical ions, see Chow, YL. React. Intermed. (Plenum), 1980,1, 151. [Pg.744]

Rosenblatt etal have examined the effect of structure and isotopic substitution upon the permanganate oxidation of some alky famines (Table 4). The isotope effect of 1.84 is considered to be sufficiently low to be compatible with aminium radical-cation formation, and it is felt that, while C-H cleavage is significant for oxidation of primary amines, the dominant mode of oxidation of tertiary amines is electron-transfer, e.g. [Pg.319]

Since amines generally have low oxidation potentials, they are good electron donors in their ground state, and the donor ability is further enhanced by photoexcitation. The chemical consequence of this single electron transfer (SET) is the generation of the amine radical cations (aminium radicals) and an earlier review on the aminium radicals is available1. [Pg.684]

Product 34 predominates in the polar aprotic solvent (acetonitrile), while in the polar protic solvent (methanol) products 35 are formed preferentially. The different products are caused by the relative rate of deprotonation against desilylation of the aminium radical, that is in turn governed by the action of enone anion radical in acetonitrile as opposed to that of nucleophilic attack by methanol. In an aprotic, less silophilic solvent (acetonitrile), where the enone anion radical should be a strong base, the proton transfer is favoured and leads to the formation of product 34. In aprotic solvents or when a lithium cation is present, the enone anion radical basicity is reduced by hydrogen bonding or coordination by lithium cation, and the major product is the desilylated 35 (Scheme 4). [Pg.689]

Since the last review in this series, a number of reports has been published to clarify the primary photoprocess and to show the application of aminium radical reactions in syntheses. [Pg.810]

In solution photochemistry in the presence of acids, the primary process is also the same except that both NND and the aminyl radical are protonated the recombination of the aminium radical and NO to give 295A is too slow to compete with bond scissions174 (Scheme 11). The failure of oxygen to quench nitrosamine photoreactions in either solution (see below) or gas phases under various conditions must also mean a very short lifetime of singlet excited nitrosamines, in agreement with the fast dissociation159,160. [Pg.811]

Nitramines are known to photodissociate from their jt,jt state to give aminyl and nitric oxide radicals in the presence of an acid the aminyl radicals are protonated to give aminium radicals, which can initiate addition to olefins. As a synthetic reaction, photolysis of nitramines in the presence of acids can be conveniently run under oxygen to give oxidative addition similar to those shown in equation 145 indeed TV-nitrodimethylamine is photolysed with triene 299 under such conditions to give a mixture of 301 and 302, similar to results observed in the oxidative nitrosamine photoaddition169. To simplify the isolation, the crude products are reduced with LAH to form the open-chain amino alcohol 303. Some other oxidative photoadditions of N-nitro dimethylamine to other olefins are reported. As the photoreaction has to use a Corex filter and product yields are no better than those shown by nitrosamines, further investigations were scarcely carried out. [Pg.816]

The microscopic reverse of Eq. (2), the protonation of free radicals (such as, for example, aminium radicals) offers an additional access to aminium radical cations [57-60] (Eq. 3). [Pg.80]

An anodic azacyclization, producing tropane-related 11-substituted dibenzo[a,d]cycloheptimines 123, was recently developed by Karady et al. [136, 137]. This two-electron process is initiated by anodic oxidation of the O-substituted hydroxylamine 119 in nucleophilic solvent. It is proposed that the first one-electron oxidation leads to the aminium radical cation 120 which adds rapidly to the double bond. The electron-rich carbon radical 121 is readily oxidized to the carbocation 122. Selective nucleophilic attack on 122 from the less hindered exo-side yields the 11- substituted product 123. Depending on the... [Pg.95]

The X-ray crystal structure of the hexafluoroantimonate salt of 1,4-diithin radical cation stabilized by bicyclo[2.2.2]octane annelation revealed a planar ring and was in agreement with theoretical calculations. Tertiary aminium radical cations underwent facile 5-exo-cyclization to give distonic 2-substituted pyrrolidinium radical cations. [Pg.180]

A more detailed evaluation of the diverse structures proposed for the secondary species goes beyond the scope of this review. We mwely emphasize that the ESR results provide detailed evidence for the nature of the radical center, but fail to elucidate the cationic site. The identity of this center is left to secondary considerations or speculation. We also note that any alternative structure has the virtue of not contradicting the ab irutio calculations the potential c ture of chloride ion has precedent in the nucleophilic substitution at a cyclopropane carbon (see Section 7). Another type of ring-opened structure has been postulated as an intermediate in the aminium radical cation catalyzed rearrangement of l-aryl-2-vinylcyclopropanes (see Section 5). [Pg.275]

A similar pattern of reactivity has been observed by Burrows and coworkers for the reaction between A -acetyllysine methyl ester (Lys) and dG. This reaction was studied in order to gain an understanding of structural aspects of DNA-protein cross-links (DPCs). These cross-links are regarded as a common lesion of oxidative damage to cells, but remain, from a chemical point, a poorly understood DNA lesion. As pointed out by Burrows, oxidation of protein-DNA complexes should occur preferentially at the primary amines since these sites have a lower oxidation potential (1.1 V vs. NHE, pH 10) than G. While protonation of the primary amine inhibits the oxidative process, transient deprotonation of a lysine residue would give rise to a lysine aminyl radical (or aminium radical cation). Using... [Pg.187]

Radical cations can be generated by many chemical oxidizing reagents, including Brpnsted and Lewis acids, the halogens, peroxide anions or radical anions, metal ions or oxides, nitrosonium and dioxygenyl ions, stable aminium radical cations, semiconductor surfaces, and suitable zeolites. In principle, it is possible to choose a reagent with a one-electron redox potential sufficient for oxidation-reduction, and a two-electron potential insufficient for oxidation-reduction of the radical ion. [Pg.209]

Nonaromatic Aminium Radicals Y. L. Chow etal., Chem. Rev., 1978, 78, 243-274. Cyclazines and Related N-Bridged Annulenes , A. Taurins, in Special Topics in Heterocyclic Chemistry , ed. A. Weissberger and E. C. Taylor, Wiley, New York, 1977,245-270. [Pg.61]


See other pages where Radical aminium is mentioned: [Pg.228]    [Pg.228]    [Pg.909]    [Pg.16]    [Pg.17]    [Pg.86]    [Pg.688]    [Pg.811]    [Pg.812]    [Pg.812]    [Pg.814]    [Pg.96]    [Pg.282]    [Pg.19]    [Pg.20]    [Pg.142]    [Pg.527]    [Pg.527]    [Pg.692]    [Pg.588]    [Pg.942]   
See also in sourсe #XX -- [ Pg.234 ]

See also in sourсe #XX -- [ Pg.9 , Pg.24 , Pg.34 , Pg.177 , Pg.178 , Pg.211 ]

See also in sourсe #XX -- [ Pg.11 , Pg.380 , Pg.935 ]

See also in sourсe #XX -- [ Pg.472 ]




SEARCH



Amines aminium radical reactions

Aminium cation radicals Diels-Alder reactions

Aminium radical cation

Aminium radical ion

Aminium radical reactions

Deprotonation aminium radical reactions

Radicals aminium cation-, generation

Reduction Aminium radical ions

© 2024 chempedia.info