Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous solution, lipids

Other examples of bilayer structures already mentioned are the sponge phase and bicontinuous cubic phases. The sponge phase has been most studied for nonionic surfactants and is related to common microemulsions. Bilayers may also easily close on themselves to form discrete entities including unilamellar vesicles and multilamellar liposomes. Vesicles are of interest because of the division into inner and outer aqueous domains separated by the bilayer. Vesicles and liposomes are normally not thermodynamically stable (although there are exceptions) and tend to phase separate into a lamellar phase and a dilute aqueous solution. Lipid bilayers are important constituents of living organisms and form membranes, which act as barriers between different compartments. Certain surfactants and lipids may form reversed vesicles, i. e. vesicles with inner and outer oleic domains separated by a (reversed) amphiphile bilayer the bilayer may or may not contain some water. [Pg.440]

FIG. 1 Self-assembled structures in amphiphilic systems micellar structures (a) and (b) exist in aqueous solution as well as in ternary oil/water/amphiphile mixtures. In the latter case, they are swollen by the oil on the hydrophobic (tail) side. Monolayers (c) separate water from oil domains in ternary systems. Lipids in water tend to form bilayers (d) rather than micelles, since their hydrophobic block (two chains) is so compact and bulky, compared to the head group, that they cannot easily pack into a sphere [4]. At small concentrations, bilayers often close up to form vesicles (e). Some surfactants also form cyhndrical (wormlike) micelles (not shown). [Pg.632]

Amphipathic lipids spontaneously form a variety of structures when added to aqueous solution. All these structures form in ways that minimize contact between the hydrophobic lipid chains and the aqueous milieu. For example, when small amounts of a fatty acid are added to an aqueous solution, a mono-layer is formed at the air-water interface, with the polar head groups in contact with the water surface and the hydrophobic tails in contact with the air (Figure 9.2). Few lipid molecules are found as monomers in solution. [Pg.261]

Phospholipids e.g. form spontaneously multilamellar concentric bilayer vesicles73 > if they are suspended e.g. by a mixer in an excess of aqueous solution. In the multilamellar vesicles lipid bilayers are separated by layers of the aqueous medium 74-78) which are involved in stabilizing the liposomes. By sonification they are dispersed to unilamellar liposomes with an outer diameter of 250-300 A and an internal one of 150-200 A. Therefore the aqueous phase within the liposome is separated by a bimolecular lipid layer with a thickness of 50 A. Liposomes are used as models for biological membranes and as drug carriers. [Pg.12]

It should be noted that Cypridina luciferin emits a fairly strong chemiluminescence in aqueous solutions in the presence of various lipids and surfactants, even in the complete absence of luciferase. The luminescence is especially conspicuous with cationic surfactants (such as hexadecyltrimethylammonium bromide) and certain emulsion materials (such as egg yolk and mayonnaise). Certain metal ions (especially Fe2+) and peroxides can also cause luminescence of the luciferin. Therefore, great care must be taken in the detection of Cypridina luciferase in biological samples with Cypridina luciferin. [Pg.61]

Collection of Nonsaponifiable Lipids. Two hundred ants from the 2-C14-acetate feeding were ground with sand and the resulting brei refluxed for 4 hours in 25 ml. of ethanol, ethanol-diethyl ether (3 to 1), and diethyl ether (twice). The extracts were pooled, the solvents were evaporated, and the residue was saponified by refluxing for 1 hour with 20 ml. of methanolic potassium hydroxide (10% potassium hydroxide in 60% aqueous methanol). An equal quantity of water was added and the aqueous solution extracted three... [Pg.35]

Sodium dodecyl sulfate has been used to induce a dry, scaly skin condition in human subjects by daily treatment with a 4% aqueous solution on one leg over a period of 2 weeks. Measurements were made of stratum comeum hydration, scaliness, and lipid composition which were used to assess in vivo surfactant perturbations on desquamation [381]. [Pg.292]

Hydrolysis of substrates is performed in water, buffered aqueous solutions or biphasic mixtures of water and an organic solvent. Hydrolases tolerate low levels of polar organic solvents such as DMSO, DMF, and acetone in aqueous media. These cosolvents help to dissolve hydrophobic substrates. Although most hydrolases require soluble substrates, lipases display weak activity on soluble compounds in aqueous solutions. Their activity markedly increases when the substrate reaches the critical micellar concentration where it forms a second phase. This interfacial activation at the lipid-water interface has been explained by the presence of a... [Pg.133]

A method resulting in improved encapsulation of aqueous phase by MLV is the so-called dehydration-rehydration procedure (Kirby and Gregoriadis, 1984 Shew and Deamer, 1985). The lipid (usually preformed liposomes) is dried (by either lyophilization or evaporation) in the presence of the aqueous solute to be entrapped, thus forming a mixed film with solute trapped between layers. Subsequent gradual rehydration with a minimum of aqueous phase leads to the formation of MLV with a high entrapment of the aqueous solutes added. [Pg.265]

In some polysaccharides, the reducing terminal is linked, through a phosphoric diester linkage, to O-1 of a 2,3-di-6 -acylglycerol. This structural feature has been demonstrated for some capsular polysaccharides from E. coli and Neisseria species, - but is probably more common than that. Non-covalent linkage between the lipid part and the cell membrane may explain why extracellular polysaccharides often occur as capsules, and the high (apparent) molecular weight observed for these polysaccharides may be due to micelle formation in aqueous solution. [Pg.315]

The lipid molecule is the main constituent of biological cell membranes. In aqueous solutions amphiphilic lipid molecules form self-assembled structures such as bilayer vesicles, inverse hexagonal and multi-lamellar patterns, and so on. Among these lipid assemblies, construction of the lipid bilayer on a solid substrate has long attracted much attention due to the many possibilities it presents for scientific and practical applications [4]. Use of an artificial lipid bilayer often gives insight into important aspects ofbiological cell membranes [5-7]. The wealth of functionality of this artificial structure is the result of its own chemical and physical properties, for example, two-dimensional fluidity, bio-compatibility, elasticity, and rich chemical composition. [Pg.225]

Figure 13.7 (a) The self-spreading distance and (b) velocity of egg-PC lipid bilayer in NaCI aqueous solutions with different concentrations, (x) 100mM, (0) 10mM, and ( ) 1 mM. Adapted from Ref [53] with permission. [Pg.231]

The reagent used for the deteetion may be speeifie to a special functional group or specific lipids or may be a nonspecific reagent that makes all hpids visible. The most commonly used reagent that is nonspecific for any lipid group is 0.1% (w/v) 2, 7 -dichlorofuorescein in 95% methanol. This is mainly useful when the plates have been developed in acidic solvents. The lipid spots or bands can be visualized as yellow spots or bands under UV light. After the plates are developed in alkaline solvents, an aqueous solution of Rhodamine 6G (0.01%) can be used, and lipid spots can be seen as pink spots under UV. Because both these methods are nondestructive, they can be effectively used in PTLC so that the separated sample bands can be scraped off and used for further analysis. [Pg.314]

Most studies of ORR catalysis by metalloporphyrins have been carried out using water-insoluble catalysts absorbed on a graphite electrode in contact with aqueous solution. In a limited number of cases, four other approaches have been used catalysts imbedded in an inert film (i.e., Nafion or lipid) on the electrode surface self-assembled monolayers of catalysts catalysts in aqueous or mixed organic/aqueous solutions in contact with an electrode and catalysis in mixed aqueous/organic medium using... [Pg.647]

Other methods for preparing liposomes have been developed, such as hydration of lipids from an organic phase, and detergent removal methods. A lipid bilayer is formed in an aqueous solution of lipids dissolved in an organic solvent... [Pg.33]

With the exception of rather small polar molecules, the majority of compounds, including drugs, appear to penetrate biological membranes via a lipid route. As a result, the membrane permeability of most compounds is dependent on K0/w. The physicochemical interpretation of this general relationship is based on the atomic and molecular forces to which the solute molecules are exposed in the aqueous and lipid phases. Thus, the ability of a compound to partition from an aqueous to a lipid phase of a membrane involves the balance between solute-water and solute-membrane intermolecular forces. If the attractive forces of the solute-water interaction are greater than those of the solute-membrane interaction, membrane permeability will be relatively poor and vice versa. In examining the permeability of a homologous series of compounds... [Pg.41]

The second model of a biological membrane is the liposome (lipid vesicle), formed by dispersing a lipid in an aqueous solution by sonication. In this way, small liposomes with a single BLM are formed (Fig. 6.11), with a diameter of about 50 nm. Electrochemical measurements cannot be carried out directly on liposomes because of their small dimensions. After addition of a lipid-soluble ion (such as the tetraphenylphosphonium ion) to the bathing solution, however, its distribution between this solution and the liposome is measured, yielding the membrane potential according to Eq. [Pg.452]

Results of parameter optimization and MD simulations of small model compounds have been published, including alcohols [63], alkanes [63], aromatic [64] and heteroaromatic [209] compounds and liquid amides [65], Studies of ions in aqueous solution were also performed [61, 88] and results from an MD simulation on a DPPC lipid monolayer have been reported (Harder, MacKerell, Roux, submitted). Notable from the monolayer study was the reproduction of the dipole potential across the monolayer, a value that cannot be reproduced using non-polarizable models. This exciting, unforeseen observation points to the types of results that may be obtained from polarizable macromolecular force fields that are not accessible to the present additive models. [Pg.243]


See other pages where Aqueous solution, lipids is mentioned: [Pg.29]    [Pg.270]    [Pg.270]    [Pg.976]    [Pg.13]    [Pg.270]    [Pg.426]    [Pg.459]    [Pg.29]    [Pg.270]    [Pg.270]    [Pg.976]    [Pg.13]    [Pg.270]    [Pg.426]    [Pg.459]    [Pg.2377]    [Pg.2498]    [Pg.353]    [Pg.2139]    [Pg.18]    [Pg.54]    [Pg.262]    [Pg.279]    [Pg.367]    [Pg.326]    [Pg.465]    [Pg.16]    [Pg.442]    [Pg.351]    [Pg.272]    [Pg.229]    [Pg.490]    [Pg.101]    [Pg.44]    [Pg.16]    [Pg.31]    [Pg.33]    [Pg.450]    [Pg.453]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Lipid solutions

Lipids in aqueous solution

© 2024 chempedia.info