Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous phase yield

An ethereal solution approximately 2.5 molar in methyllithium is prepared from 17 ml of methyl iodide and 4 g of lithium metal in 200 ml of anhydrous ether. A mixture consisting of 150 ml anhydrous ether, 3 g (10 mmoles) of 3jS-hydroxy-5a-androstane-ll,17-dione and 60 ml (0.15 moles) of the above methyllithium solution are stirred at room temperature for 40 hr. The reaction mixture is diluted with 100 ml of water and the ether is removed by distillation. Filtration of the chilled aqueous phase yields 2.6 g (77%) of 1 la,17a-dimethyl-5a-androstane-3a,l l/ ,17j5-triol mp 149-154°. Recrystallization from acetone-hexane yields pure material mp 164-166° [a] —5° (CHCI3). [Pg.71]

The table also shows that a three-phase LLE (organic extraction followed by back-extraction into aqueous phase) yields lower recoveries and enrichment compared to three-phase LPME, as reflected in peak heights from the two techniques as shown in Figure 1.29. Furthermore, three-phase LLE is sensitive to the magnitude of Ka/org and LPME is not. [Pg.38]

A suspension process using redox initiation in a water medium was developed. The redox system is a combination of persulfatesulfite. Often ferrous or cupric salts were added as a catalyst for the redox reaction. Polymerizations were run in water at low temperature (20-25°C) and low pressure (65-85 psi). Monomer to monomer-plus-water weight ratios of 0.20 to 0.25 were used. Good agitation was required to keep an adequate monomer concentration in the aqueous phase. Yields ofup to 100% were obtained with polymer inherent viscosities of0.4 to 1.5 dl/g in C6F5C1. Reactions were run on both a 1-gal and a 100-gal scale. [Pg.83]

Dahl E. E., Saltzman E. S., and De Bruyn W. J. (2003) The aqueous phase yield of alkyl nitrates from ROO + NO implications for photochemical production in seawater. Geophys. Res. Lett. 30, 1271-1273. [Pg.2931]

HCl and 50 ml of water. The upper layer was separated off and the aqueous phase was extracted five times with small portions of THF. After drying the combined solutions over magnesium sulfate the solvent was removed in a water-pump vacuum. The residue was distilled through a 30-cm Vigreux column, connected to an air condenser. After a preliminary aqueous fraction of the carboxylic acid the main fraction passed over at 100°C/15 mmHg. The compound solidified in the receiver and (partly) in the condenser. The yield was almost quantitative. [Pg.59]

Hydrochloric acid [7647-01-0], which is formed as by-product from unreacted chloroacetic acid, is fed into an absorption column. After the addition of acid and alcohol is complete, the mixture is heated at reflux for 6—8 h, whereby the intermediate malonic acid ester monoamide is hydroly2ed to a dialkyl malonate. The pure ester is obtained from the mixture of cmde esters by extraction with ben2ene [71-43-2], toluene [108-88-3], or xylene [1330-20-7]. The organic phase is washed with dilute sodium hydroxide [1310-73-2] to remove small amounts of the monoester. The diester is then separated from solvent by distillation at atmospheric pressure, and the malonic ester obtained by redistillation under vacuum as a colorless Hquid with a minimum assay of 99%. The aqueous phase contains considerable amounts of mineral acid and salts and must be treated before being fed to the waste treatment plant. The process is suitable for both the dimethyl and diethyl esters. The yield based on sodium chloroacetate is 75—85%. Various low molecular mass hydrocarbons, some of them partially chlorinated, are formed as by-products. Although a relatively simple plant is sufficient for the reaction itself, a si2eable investment is required for treatment of the wastewater and exhaust gas. [Pg.467]

Commercially, soap is most commonly produced through either the direct saponification of fats and oils with caustic or the hydrolysis of fats and oils to fatty acids followed by stoichiometric (equal molar) neutralization with caustic. Both of these approaches yield workable soap in the form of concentrated soap solutions (- 70% soap). This concentration of soap is the target on account of the aqueous-phase properties of soap as well as practical limitations resulting from these properties. Hence, before discussing the commercial manufacturing of soap, it is imperative to understand the phase properties of soap. [Pg.151]

Vinyl chloride can be completely oxidized to CO2 and HCl using potassium permanganate [7722-64-7] in an aqueous solution at pH 10. This reaction can be used for wastewater purification, as can ozonolysis, peroxide oxidation, and uv irradiation (42). The aqueous phase oxidation of vinyl chloride with chlorine yields chloroacetaldehyde (43). [Pg.414]

Suspension Polymerization. At very low levels of stabilizer, eg, 0.1 wt %, the polymer does not form a creamy dispersion that stays indefinitely suspended in the aqueous phase but forms small beads that setde and may be easily separated by filtration (qv) (69). This suspension or pearl polymerization process has been used to prepare polymers for adhesive and coating appHcations and for conversion to poly(vinyl alcohol). Products in bead form are available from several commercial suppHers of PVAc resins. Suspension polymerizations are carried out with monomer-soluble initiators predominantly, with low levels of stabilizers. Suspension copolymerization processes for the production of vinyl acetate—ethylene bead products have been described and the properties of the copolymers determined (70). Continuous tubular polymerization of vinyl acetate in suspension (71,72) yields stable dispersions of beads with narrow particle size distributions at high yields. [Pg.465]

High molecular weight primary, secondary, and tertiary amines can be employed as extractants for zirconium and hafnium in hydrochloric acid (49—51). With similar aqueous-phase conditions, the selectivity is in the order tertiary > secondary > primary amines. The addition of small amounts of nitric acid increases the separation of zirconium and hafnium but decreases the zirconium yield. Good extraction of zirconium and hafnium from ca 1 Af sulfuric acid has been effected with tertiary amines (52—54), with separation factors of 10 or more. A system of this type, using trioctylarnine in kerosene as the organic solvent, is used by Nippon Mining of Japan in the production of zirconium (55). [Pg.430]

Snia Viscosa. Catalytic air oxidation of toluene gives benzoic acid (qv) in ca 90% yield. The benzoic acid is hydrogenated over a palladium catalyst to cyclohexanecarboxyhc acid [98-89-5]. This is converted directiy to cmde caprolactam by nitrosation with nitrosylsulfuric acid, which is produced by conventional absorption of NO in oleum. Normally, the reaction mass is neutralized with ammonia to form 4 kg ammonium sulfate per kilogram of caprolactam (16). In a no-sulfate version of the process, the reaction mass is diluted with water and is extracted with an alkylphenol solvent. The aqueous phase is decomposed by thermal means for recovery of sulfur dioxide, which is recycled (17). The basic process chemistry is as follows ... [Pg.430]

The reaction of aHyl chloride and chlorine ia water produces trichloropropane as a by-product even ia the aqueous phase, along with tetrachloropropyl ether. For maximum dichi orohydrin yield it is necessary to mn the reaction at low concentrations of chloride ion and of chlorohydrin, that is, with high water dilution. However, high dilution results ia an aqueous effluent that contains minor amounts of these by-products that require significant treatment to reduce them to levels acceptable ia outfalls to rivers, lakes, and other pubHc waterways. [Pg.75]

The cooled mixture is transferred to a 3-1. separatory funnel, and the ethylene dichloride layer is removed. The aqueous phase is extracted three times with a total of about 500 ml. of ether. The ether and ethylene chloride solutions are combined and washed with three 100-ml. portions of saturated aqueous sodium carbonate solution, which is added cautiously at first to avoid too rapid evolution of carbon dioxide. The non-aqueous solution is then dried over anhydrous sodium carbonate, the solvents are distilled, and the remaining liquid is transferred to a Claisen flask and distilled from an oil bath under reduced pressure (Note 5). The aldehyde boils at 78° at 2 mm. there is very little fore-run and very little residue. The yield of crude 2-pyrrolealdehyde is 85-90 g. (89-95%), as an almost water-white liquid which soon crystallizes. A sample dried on a clay plate melts at 35 0°. The crude product is purified by dissolving in boiling petroleum ether (b.p. 40-60°), in the ratio of 1 g. of crude 2-pyrrolealdehyde to 25 ml. of solvent, and cooling the solution slowly to room temperature, followed by refrigeration for a few hours. The pure aldehyde is obtained from the crude in approximately 85% recovery. The over-all yield from pyrrole is 78-79% of pure 2-pyrrolealdehyde, m.p. 44 5°. [Pg.75]

The residue (12 g) which contains the 18-iodo-18,20-ether is dissolved in 200 ml of acetone, 5 g of silver chromate is added Note 3) and after cooling to 0°, 11.8 ml of a solution of 13.3 g of chromium trioxide and 11.5 ml of concentrated sulfuric acid, diluted to 50 ml with water is added during a period of 5 min. After an additional 60 min, a solution of 112 g of sodium acetate in 200 ml of water is added and the mixture diluted with benzene (400 ml), filtered and the benzene layer separated. The aqueous phase is reextracted with benzene, washed with half-saturated sodium chloride solution, dried and evaporated to yield 11.2 g of a crystalline residue. Recrystallization from ether gives 7.2 g (72%) of pure 3/5, 1 la, 20/5-trihydroxy-5a-pregnan-18-oic acid 18,20 lactone 3,11-diacetate mp 216-218°. [Pg.252]

Preparation of l9-Norandrost-A-ene-3, l-dionef A solution of 1.1 g of 10y5-cyano-19-norandrost-5-ene-3,17-dione bis-ethylene ketal in a mixture of 15 ml of ethanol and 15 ml of toluene is carefully added to a vigorously stirred suspension of 10 g of sodium in 150 ml of boiling toluene. The addition is regulated to maintain the reaction mixture at the boiling point of the solvent. Another 40 ml of anhydrous ethanol is then added at the same rate. The solution is cooled and the excess of sodium is decomposed by addition of 95% ethanol. The reaction mixture is then diluted with water, the toluene layer separated and the aqueous phase extracted twice with ether. The organic solution is washed with water, dried and evaporated to yield 1 g of an amorphous mixture of the bis-ethylene ketals of 19- norahd-rost-5- and -5(10)-ene-3,17-dione (Note 1). [Pg.278]


See other pages where Aqueous phase yield is mentioned: [Pg.572]    [Pg.386]    [Pg.46]    [Pg.896]    [Pg.202]    [Pg.198]    [Pg.295]    [Pg.482]    [Pg.572]    [Pg.386]    [Pg.46]    [Pg.896]    [Pg.202]    [Pg.198]    [Pg.295]    [Pg.482]    [Pg.937]    [Pg.497]    [Pg.373]    [Pg.64]    [Pg.326]    [Pg.335]    [Pg.75]    [Pg.2143]    [Pg.4]    [Pg.418]    [Pg.68]    [Pg.96]    [Pg.127]    [Pg.181]    [Pg.363]    [Pg.63]    [Pg.257]    [Pg.97]    [Pg.69]    [Pg.492]    [Pg.410]    [Pg.448]    [Pg.61]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



© 2024 chempedia.info