Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous-phase transformation

The values given reflect only the physical solubility of the gas regardless of the subsequent fate of the dissolved species. These constants do not account for dissociation or other aqueous-phase transformations. fcThc value is 6.3 x 103 if the diol formation is included. [Pg.288]

In the more classical approach of in situ product removal, the applicability of different styrene-divinylbenzene resins for low-pressure downflow adsorption of benzaldehyde in a fixed bed was tested, allowing the nearly complete recovery of the product from Poria cocos cultures (with continuous ultrafiltration and reinjection of biomass into the bioreactor) [100]. Another example is the application of HP20 resin as the solid phase directly in contact with the fermentation medium (cultures of Trametes suaveolens CBS 334.85), with a total productivity of 710 mgl , which is more than 20 times higher than the aqueous-phase transformation [101]. [Pg.285]

The final factor influencing the stabiHty of these three-phase emulsions is probably the most important one. Small changes in emulsifier concentration lead to drastic changes in the amounts of the three phases. As an example, consider the points A to C in Figure 16. At point A, with 2% emulsifier, 49% water, and 49% aqueous phase, 50% oil and 50% aqueous phase are the only phases present. At point B the emulsifier concentration has been increased to 4%. Now the oil phase constitutes 47% of the total and the aqueous phase is reduced to 29% the remaining 24% is a Hquid crystalline phase. The importance of these numbers is best perceived by a calculation of thickness of the protective layer of the emulsifier (point A) and of the Hquid crystal (point B). The added surfactant, which at 2% would add a protective film of only 0.07 p.m to emulsion droplets of 5 p.m if all of it were adsorbed, has now been transformed to 24% of a viscous phase. This phase would form a very viscous film 0.85 p.m thick. The protective coating is more than 10 times thicker than one from the surfactant alone because the thick viscous film contains only 7% emulsifier the rest is 75% water and 18% oil. At point C, the aqueous phase has now disappeared, and the entire emulsion consists of 42.3% oil and 57.5% Hquid crystalline phase. The stabilizing phase is now the principal part of the emulsion. [Pg.203]

The term fermentation was obtained from the Latin verb fervere which describes the action of yeast or malt on sugar or fruit extracts and grain. The boiling is due to the production of carbon dioxide bubbles from the aqueous phase under the anaerobic catabolism of carbohydrates in the fermentation media. The art of fermentation is defined as the chemical transformation of organic compounds with the aid of enzymes. The ability of yeast to make alcohol was known to the Babylonians and Sumerians before 6000 bc. The Egyptians discovered the generation of carbon dioxide by brewer s yeast in the preparation... [Pg.2]

On the other hand, 3-phenylpropionitrile was synthesized from Z-3-phenyl-propionaldoxime (0.75 M) in a quantitative yield (98gP ) by the use of cells of E. coli JM 109/pOxD-9OF, a transformant harboring a gene for a new enzyme, phenylacetaldoxime dehydratase, from Bacillus sp. strain OxB-1. Other arylalkyl- and alkyl-nitriles were also synthesized in high yields from the corresponding aldoximes. Moreover, 3-phenylpropionitrile was successfully synthesized by the recombinant cells in 70 and 100% yields from 0.1 M unpurified P/Z-3-phenylpropionaldoxime, which is spontaneously formed from 3-phenylpropionaldehyde and hydroxylamine in a butyl acetate/water biphasic system and aqueous phase, respectively. [Pg.135]

While experiment and theory have made tremendous advances over the past few decades in elucidating the molecular processes and transformations that occur over ideal single-crystal surfaces, the application to aqueous phase catalytic systems has been quite limited owing to the challenges associated with following the stmcture and dynamics of the solution phase over metal substrates. Even in the case of a submersed ideal single-crystal surface, there are a number of important issues that have obscured our ability to elucidate the important surface intermediates and follow the elementary physicochemical surface processes. The ability to spectroscopically isolate and resolve reaction intermediates at the aqueous/metal interface has made it difficult to experimentally estabhsh the surface chemistry. In addition, theoretical advances and CPU limitations have restricted ab initio efforts to very small and idealized model systems. [Pg.95]

Early studies of ET dynamics at externally biased interfaces were based on conventional cyclic voltammetry employing four-electrode potentiostats [62,67 70,79]. The formal pseudo-first-order electron-transfer rate constants [ket(cms )] were measured on the basis of the Nicholson method [99] and convolution potential sweep voltammetry [79,100] in the presence of an excess of one of the reactant species. The constant composition approximation allows expression of the ET rate constant with the same units as in heterogeneous reaction on solid electrodes. However, any comparison with the expression described in Section II.B requires the transformation to bimolecular units, i.e., M cms . Values of of the order of 1-2 x lO cms (0.05 to O.IM cms ) were reported for Fe(CN)g in the aqueous phase and the redox species Lu(PC)2, Sn(PC)2, TCNQ, and RuTPP(Py)2 in DCE [62,70]. Despite the fact that large potential perturbations across the interface introduce interferences in kinetic analysis [101], these early estimations allowed some preliminary comparisons to established ET models in heterogeneous media. [Pg.203]

Whitesides et al. examined the effect of substituents on the allyllic moiety of the indium-mediated reactions in water and found that the use of indium at room temperature gave results comparable to those of tin-mediated reactions carried out at reflux.110 Replacement of the aqueous phase with 0.1 N HC1 further increased the rate of the reaction. The transformation can also be carried out with preformed allylindium chloride. [Pg.236]

Biological activity can be used in two ways for the bioremediation of metal-contaminated soils to immobilize the contaminants in situ or to remove them permanently from the soil matrix, depending on the properties of the reduced elements. Chromium and uranium are typical candidates for in situ immobilization processes. The bioreduction of Cr(VI) and Ur(VI) transforms highly soluble ions such as CrO and UO + to insoluble solid compounds, such as Cr(OH)3 and U02. The selenate anions SeO are also reduced to insoluble elemental selenium Se°. Bioprecipitation of heavy metals, such as Pb, Cd, and Zn, in the form of sulfides, is another in situ immobilization option that exploits the metabolic activity of sulfate-reducing bacteria without altering the valence state of metals. The removal of contaminants from the soil matrix is the most appropriate remediation strategy when bioreduction results in species that are more soluble compared to the initial oxidized element. This is the case for As(V) and Pu(IV), which are transformed to the more soluble As(III) and Pu(III) forms. This treatment option presupposes an installation for the efficient recovery and treatment of the aqueous phase containing the solubilized contaminants. [Pg.537]

It has been found that both the anhydrous Form III and dihydrate phases of carbamazepine exhibit fluorescence in the solid state [78]. The fluorescence intensity associated with the dihydrate phase was determined to be significantly more intense than that associated with the anhydrate phase, and this difference was exploited to develop a method for study of the kinetics of the aqueous solution-mediated phase transformation between these forms. Studies were conducted at temperatures over the range of 18 40 °C, and it was found that the phase transformation was adequately characterized by first-order reaction kinetics. The temperature dependence in the calculated rate constants was used to calculate activation energy of 11.2 kCal/ mol (47.4 cal/g) for the anhydrate-to-dihydrate phase conversion. [Pg.273]

Environmental organic pollutants may be degraded depending on their toxicity, solubility, distribution constant Kow because physical properties of hydrophobic chemicals may affect the solubility and therefore the amount of organic carbon available in the aqueous phase for microbial assimilation and further metabolism (Schwarzenbach and Westall 1981). Chemicals are subject to volatilization and such loss is not assessed in most of the study except for physical transformation and material balance purposes. Polyaromatic hydrocarbons (PAHs) are known to volatilized during incubation even with capping and more then 40% of the initial chemicals could be found lost (Yin and Gu, unpublished data). When proper control was not included and such... [Pg.177]

The development of amphipathic fluorescent dyes that label endocytic vesicles has permitted the study of endo-cytosis in nerve terminals in real time [25,26], The probe FM1-43 equilibrates between the aqueous phase and the membrane but is not membrane-permeating. The plasmalemma becomes fluorescent (Fig. 10-8). Upon endocytosis, the labeled membrane is internalized. When removed from the extracellular medium, the dye is retained by the endocytic vesicles but lost from the plasmalemma. Endocytic vesicles are transformed into synaptic vesicles containing FM1-43. Importantly, recycled synaptic vesicles lose the probe upon exocytosis. [Pg.176]

Both models apply the same chemical scheme of mercury transformations. It is assumed that mercury occurs in the atmosphere in two gaseous forms—gaseous elemental HgO, gaseous oxidized Hg(II) particulate oxidized Hgpart, and four aqueous forms—elemental dissolved HgO dis, mercury ion Hg2+, sulphite complex Hg(S03)2, and aggregate chloride complexes HgnClm. Physical and chemical transformations include dissolution of HgO in cloud droplets, gas-phase and aqueous-phase oxidation by ozone and chlorine, aqueous-phase formation of chloride complexes, reactions of Hg2+ reduction through the decomposition of sulphite complex, and adsorption by soot particles in droplet water. [Pg.365]

As it turns out, there are pharmaceutical implications associated with the polymorphism of glycerol esters, since phase transformation reactions caused by the melting and solidification of these compounds during formulation can have profound effects on the quality of products. For instance, during the development of an oil-in-water cream formulation, syneresis of the aqueous phase was observed upon using certain sources of glyceryl monostearate [13]. Primarily through the use of variable temperature X-ray diffraction, it was learned that... [Pg.76]

The abiotic characteristics of aqueous-solid phase interfaces strongly influence chemical/biochemical reactions in the interface microenvironment of aqueous-solid phases. These reactions at interfaces are controlled mainly by biotic activity. Specifically, all aqueous-solid phase microenvironments contain living microorganisms that mediate biochemical transformations. Solid phases (e.g., soil and sediment particles) usually contain billions of microorganisms, with the aqueous phase containing smaller, but still significant, populations [22,33-39]. [Pg.321]


See other pages where Aqueous-phase transformation is mentioned: [Pg.62]    [Pg.261]    [Pg.263]    [Pg.264]    [Pg.265]    [Pg.267]    [Pg.269]    [Pg.270]    [Pg.271]    [Pg.273]    [Pg.275]    [Pg.62]    [Pg.261]    [Pg.263]    [Pg.264]    [Pg.265]    [Pg.267]    [Pg.269]    [Pg.270]    [Pg.271]    [Pg.273]    [Pg.275]    [Pg.74]    [Pg.382]    [Pg.186]    [Pg.347]    [Pg.148]    [Pg.128]    [Pg.393]    [Pg.466]    [Pg.604]    [Pg.147]    [Pg.167]    [Pg.199]    [Pg.61]    [Pg.345]    [Pg.335]    [Pg.6]    [Pg.182]    [Pg.381]    [Pg.364]    [Pg.59]    [Pg.481]    [Pg.44]   
See also in sourсe #XX -- [ Pg.83 , Pg.253 , Pg.264 , Pg.272 ]




SEARCH



Phase transformation phases

Phase transformations

© 2024 chempedia.info