Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Applications silicon carbide

Electrical applications silicon carbide in, 22 539 silver in, 22 658 Electrical behavior... [Pg.300]

Superhard compounds are obviously formed by a combination of the low atomic number elements boron, carbon, silicon, and nitrogen. Carbon-carbon as diamond, boron-nitrogen as cubic boron nitride, boron-carbon as boron carbide, and silicon-carbon as silicon carbide, belong to the hardest materials hitherto known. Because of their extreme properties and the variety of present and potential commercial applications, silicon carbide (SiC) and boron carbide (B4C) are, besides tungsten carbide-based hard metals, considered by many as the most important carbide materials. [Pg.131]

Applications silicon carbide precursor, wear coating and sealer coating for ceramic composites and precursor for porous composites for high-temperature filters and catalysts ... [Pg.326]

Weiss J R, Diefendrof R J, Chemically vapour deposited SiC for high temperature and structural applications , Silicon Carbide-1973, University of South Carolina Press, Columbia, SC, 1973, 80-91. [Pg.453]

CARBmES - SILICON CARBIDE] (Vol4) in therapeutic applications [ENZYME APPLICATIONS - THERAPEUTIC] (Vol 9)... [Pg.874]

Seal Face Combinations The dynamic of seal faces is better understood today. Seal-face combinations have come a long way in the past 8-10 years. Stellite is being phased out of the petroleum and petrochemical applications. Better grades of ceramic are available, cost of tungsten has come down, and relapping of tungsten are available near most industrial areas. Silicon carbide is being used in abrasive service. [Pg.941]

ANSI/IEEE-C62.2/1994 Guide for application of gapped silicon carbide surge arrester for a.c. systems ... [Pg.624]

Many ceramic applications are high value and small volume, so energy expenditure is high. Ferroelectric magnets, electronic substrates, electrooptics, abrasives such as silicon carbide and diamond, are examples. Diamond is found naturally, and made synthetically by the General Electric Company at high pressure and temperature. Synthetic diamonds for abrasives require less energy to make than the value in Table 4 nevertheless, the market is carefully divided between natural and synthetic diamonds. [Pg.774]

A wide range of applications for hard, wear-resistant coatings of electroless nickel containing silicon carbide particles have been discussed by Weissenberger . The solution is basically for nickel-phosphorus coatings, but contains an addition of 5-15 g/1 silicon carbide. Hiibner and Ostermann have published a comparison between electroless nickel-silicon carbide, electrodeposited nickel-silicon carbide, and hard chromium engineering coatings. [Pg.541]

Experimental applications include the direct deposition of patterns as small as 0.5 im in semiconductor applications using holographic methods, and the production of rods and coreless boron and silicon carbide fibers (see Ch. 19). [Pg.127]

Isothermal Infiltration. Several infiltration procedures have been developed, which are shown schematically in Fig. 5.15.P3] In isothermal infiltration (5.15a), the gases surround the porous substrate and enter by diffusion. The concentration of reactants is higher toward the outside of the porous substrate, and deposition occurs preferentially in the outer portions forming a skin which impedes further infiltration. It is often necessary to interrupt the process and remove the skin by machining so that the interior of the substrate may be densified. In spite of this limitation, isothermal infiltration is used widely because it lends itself well to simultaneous processing of a great number of parts in large furnaces. It is used for the fabrication of carbon-carbon composites for aircraft brakes and silicon carbide composites for aerospace applications (see Ch. 19). [Pg.130]

Fluidized-bed CVD was developed in the late 1950s for a specific application the coating of nuclear-fuel particles for high temperature gas-cooled reactors. PI The particles are uranium-thorium carbide coated with pyrolytic carbon and silicon carbide for the purpose of containing the products of nuclear fission. The carbon is obtained from the decomposition of propane (C3H8) or propylene... [Pg.133]

Silicon carbide (SiC) is a major industrial material with a considerable number of applications. CVD plays a significant role in its development and production, SiC is a covalent carbide with two phases a and [3. The phase of major interest here is pSiC, which has a cubic zinc blend structure. It is the one reported here. [Pg.243]

CVD silicon carbide fibers are a recent development with prom-ising potential which may take over some of the applications of CVD boron fibers or other refractory fibers, providing that the production cost can be reduced. [Pg.470]

Roewer G, Herzog U, Trommer K, Muller E, Fruhauf S (2002) Silicon Carbide - A Survey of Synthetic Approaches, Properties and Applications. 101 59-136... [Pg.167]

Roewer G, Herzog U, Trommer K, Muller E, Friihauf S (2002) Silicon Carbide - A Survey of Synthetic Approaches, Properties and Applications 101 59-136 Rosa A, Ricciardi G, Gritsenko O, Baerends EJ (2004) Excitation Energies of Metal Complexes with Time-dependent Density Functional Theory 112 49-116 Rosokha SV, Kochi JK (2007) X-ray Structures and Electronic Spectra of the n-Halogen Complexes between Halogen Donors and Acceptors with jc-Receptors. 126 137-160 Rudolf P, see Golden MS (2004) 109 201-229... [Pg.225]

Soluble polysilane polymers can also be used as precursors to silicon carbide. The first such application, using (PhMeSi)n-(Me2Si)m copolymers ("Polysilastyrene"), was to strengthen silicon nitride ceramics. The Si3N4 ceramic body was soaked in polysilane and refired, leading to the formation of silicon carbide whiskers in the pore spaces and a consequent increase in strength. (U)... [Pg.16]

Soluble polydiorganosilane homo and copolymers have recently shown great potential in such areas as precursors for the preparation of silicon carbide fibers (1), as photoinitiators in alkene polymerization (2), as photoconductors (3), and as positive or negative self-developing photoresists for photolithographic applications (4). A number of copolydiorganosilane copolymers have been reported recently (5) in which the copolymer contained equal amounts of both monomers in the feed. [Pg.112]

Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (SijN ), and boron nitride (BN) offer a wide variety of unique physical properties such as high hardness and high structural stability under environmental extremes, as well as varied electronic and optical properties. These advantageous properties provide the driving force for intense research efforts directed toward developing new practical applications for these materials. These efforts occur despite the considerable expense often associated with their initial preparation and subsequent transformation into finished products. [Pg.124]

Silicon carbide, SiC [1] and silicon nitride, Si3N4 [2], have been known for some time. Their properties, especially high thermal and chemical stability, hardness, high strength, and a variety of other properties have led to useful applications for both of these materials. [Pg.143]

A great potential for new compounds is provided by structures with two carbon and two silicon atoms around the central silicon. These polysilanes with organic groups lead to silicon-carbide ceramics. A wide field of application would be opened up if one could make a polysilane as a plastic mass which could be extruded and modeled and if after pyrolysis silicon-carbide is formed without a strong contraction (this means a high ceramic yield). Polysilane fibers are only one product in a range of many... [Pg.275]

The conventional production method for SiC - the reaction of coke and sand (Acheson process) -does not involve soluble or fusible intermediates. For many applications of silicon carbide this fact is not necessarily a disadvantage, but for the preparation of ceramic composites such intermediates are required. [Pg.293]

The high-temperature stability of SiC-based ceramics is well-known, and therefore its composite materials have been investigated for application to high-tem-perature structural materials [19-21]. However, well-known SiC-based fibers and matrix-materials stained with alkali salt are easily oxidized at high temperatures in air [22]. This would be a serious problem when these materials are used near the ocean or in a combustion gas containing alkali elements. In particular, a silicon carbide fiber containing boron (a well-known sintering aid for SiC) over 1 wt% was extensively oxidized under the above condition. In this... [Pg.126]

Apart from the reactions described above for the formation of thin films of metals and compounds by the use of a solid source of the material, a very important industrial application of vapour phase transport involves the preparation of gas mixtures at room temperature which are then submitted to thermal decomposition in a high temperature furnace to produce a thin film at this temperature. Many of the molecular species and reactions which were considered earlier are used in this procedure, and so the conclusions which were drawn regarding choice and optimal performance apply again. For example, instead of using a solid source to prepare refractory compounds, as in the case of silicon carbide discussed above, a similar reaction has been used to prepare titanium boride coatings on silicon carbide and hafnium diboride coatings on carbon by means of a gaseous input to the deposition furnace (Choy and Derby, 1993) (Shinavski and Diefendorf, 1993). [Pg.106]


See other pages where Applications silicon carbide is mentioned: [Pg.94]    [Pg.94]    [Pg.321]    [Pg.191]    [Pg.106]    [Pg.11]    [Pg.164]    [Pg.165]    [Pg.441]    [Pg.87]    [Pg.171]    [Pg.171]    [Pg.443]    [Pg.352]    [Pg.1061]    [Pg.252]    [Pg.189]    [Pg.120]    [Pg.90]    [Pg.378]    [Pg.393]    [Pg.276]    [Pg.293]    [Pg.88]    [Pg.118]    [Pg.2]    [Pg.160]    [Pg.307]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Applications silicone

CARBIDES SILICON CARBIDE

Carbides applications

Silicon applications

Silicon carbide

Silicone carbide

© 2024 chempedia.info