Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellulose acetate applications

Cellulose acetate membrane was studied because of its past use in concentrate preparation and the need to better define its performance for specific organic recovery. Cellulose acetate continues to be widely used for a variety of industrial and commercial water purification applications. Cellulose acetate was not expected to perform at the level of the more highly cross-linked and inert thin-film composite membrane. [Pg.438]

These two cellulose esters are somewhat similar in properties and applications. Cellulose acetate butyrate is commonly referred to in the chemical industry as CAB. while cellulose acetate propionate is simply termed cellulose propionate" and referred to as CAP or as CP. [Pg.311]

Application. Cellulose acetate butyrate lacquers are usually applied by spraying (air atomization, airless, spinning disk). Application by brush or dip is possible but less commonly used. [Pg.19]

Film Applications Cellulose acetate provides the basis for many photographic films and can also be used in packaging. Many cellulosic films are important medically as dialysis membranes. [Pg.13]

Regulatory Approval Food additive regulations issued by the Food and Drug Administration (FDA) permit use of eellulose acetate in specific food packaging applications. Cellulose acetate (CA) is Generally Recognized As Safe (GRAS) for use in paper and paperboard in contact with food, and has been previously sanctioned for use in film in food-contact applications.f ... [Pg.13]

As often happens when a new material is introduced, there was a rapid expansion into new, often unanticipated, applications. Cellulose acetate was no... [Pg.370]

Grafting of synthetic polymers onto cellulose and cellulose derivatives is a useful method to improve the qualities of both materials and to expand the range of their applications. Cellulose acetate grafting (initiated by free-radical, ionic processes or by gamma-irradiation) aims at the introduction of some branches of synthetic polymers into the main chain, to confer specific additional properties to the substrate itself without destroying its intrinsic characteristics. Thus, literature presents [138] ... [Pg.378]

Aromatic esters of phosphoric acid are also sometimes used. They can have a plasticization effect but can also act as flame retardants. They are used in some specialty PVC applications, cellulose acetate film applications, and polyphenylene oxide blends. Examples include triphenyl phosphate and resorcinol bis(diphenyl phosphate). [Pg.157]

MAJOR POLYMER APPLICATIONS cellulose acetate, ethylene vinyl acetate copolymer... [Pg.15]

Table 11. Application and Characteristics of Commercial-Grade Cellulose Acetate Butyrate ... Table 11. Application and Characteristics of Commercial-Grade Cellulose Acetate Butyrate ...
Polymer Membranes These are used in filtration applications for fine-particle separations such as microfiltration and ultrafiltration (clarification involving the removal of l- Im and smaller particles). The membranes are made from a variety of materials, the commonest being cellulose acetates and polyamides. Membrane filtration, discussed in Sec. 22, has been well covered by Porter (in Schweitzer, op. cit., sec. 2.1). [Pg.1707]

Cellulosic Membranes The first commercial UF membranes were made from cellulose acetate (CA), with an acetyl content of about 37 percent. They are prized for their low level of interaction with proteins and are still used in other applications where long life is not critical. [Pg.2038]

The important features of rigidity and transparency make the material competitive with polystyrene, cellulose acetate and poly(methyl methacrylate) for a number of applications. In general the copolymer is cheaper than poly(methyl methacrylate) and cellulose acetate, tougher than poly(methyl methacrylate) and polystyrene and superior in chemical and most physical properties to polystyrene and cellulose acetate. It does not have such a high transparency or such food weathering properties as poly(methyl methacrylate). As a result of these considerations the styrene-acrylonitrile copolymers have found applications for dials, knobs and covers for domestic appliances, electrical equipment and car equipment, for picnic ware and housewares, and a number of other industrial and domestic applications with requirements somewhat more stringent than can be met by polystyrene. [Pg.441]

Today the principal outlets are knife handles, table-tennis balls and spectacle frames. The continued use in knife handles is due to the pleasant appearance and the ability of the material to after-shrink around the extension of the blade. Table-tennis balls continue to be made from celluloid since it has been difficult to match the bounce and handle of the celluloid ball, the type originally used, with balls fabricated from newer polymers. Even here celluloid is now meeting the challenge of synthetic polymers. Spectacle frames are still of interest because of the attractive colour. There are, however, restrictions to their use for this application in certain countries and cellulose acetate is often preferred. [Pg.621]

Typical values for the principal properties of cellulose acetate compounds are tabulated in Table 22.2 in comparison with other cellulosic plastics. Since cellulose acetate is seldom used today in applications where detailed knowledge of physical properties are required these are given without further comment. [Pg.626]

Cellulose acetate-propionate (Tenite Propionate-Kodak) is similar to cellulose propionate. With the shorter side chains, cellulose propionate and cellulose acetate propionate tend to be harder, stiffer and of higher tensile strength than CAB. Like CAB they are easy to vacuum form and also tend to be used for similar applications such as steering wheels, tool handles, safety goggles and blister packs. [Pg.628]

Tliere is another type of application where the damping effect of plastic structures can be used to advantage. It has a long although not obvious history. The early airplanes used doped fabric as the covering for wings and other aerodynamic surfaces. The dope was cellulose nitrate and later cellulose acetate that is a damping type of plastic. Conse-... [Pg.101]

Cellulosic They are tough, transparent, hard or flexible natural polymers made from plant cellulose feedstock. With exposure to light, heat, weather and aging, they tend to dry out, deform, embrittle and lose gloss. Molding applications include tool handles, control knobs, eyeglass frames. Extrusion uses include blister packaging, toys, holiday decorations, etc. Cellulosic types, each with their specialty properties, include cellulose acetates (CAs), cellulose acetate butyrates (CABs), cellulose nitrates (CNs), cellulose propionate (CAPs), and ethyl celluloses (EC). [Pg.427]

Flame resistance The underwriters ruling on the use of self-extinguishing plastics for contact-carrying members and many other components introduces critical material selection problems. All TSs are basically self-extinguishing. Nylon, polyphenylene oxide, polysulfone, polycarbonate, vinyl, chlorinated polyether, chlorotrifluoroethy-lene, vinylidene fluoride, and fluorocarbon are examples of TPs that may be suitable for applications requiring self-extinguishing properties. Cellulose acetate and ABS are also available with these properties. Glass reinforcement improves these materials considerably. [Pg.431]

Cellulose acetate (CA) has been known, and industrially employed for decades as films, fibers, filters, membranes, tubes, and utensils, as well as other consumer products, including eyewear, fashion accessories, pens, brushes, toys, among others [13]. The market for Filter Tow, which is made from crimped, endless CA filaments, has seen a tremendous growth in the cigarette market, reaching more than 600 thousand metric tons in 2003 [14]. Additionally, cellulose mono-acetates have several potential applications, because they can be made into either water absorbent, or water-soluble polymers [15]. [Pg.105]

Carollo P (2004) In Rustemeyer P (ed) Cellulose Acetates Properties and Applications. Wiley-VCH, Weinheim, p 335... [Pg.143]

Some part of the cellulose fraction is redirected to make cellulose derivatives, such as cellulose acetate, methyl and ethyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose. These derivatives find multiple applications, for instance, as additives in current products (e.g., paints, lacquers) of chemical industry. Typically, the preparation of cellulose derivatives takes place as a two-phase reaction cellulose is pretreated, for example, with alkali, and a reagent is added to get the substitution. Usually no catalyst is needed [5]. [Pg.165]

Other commercial thermoplastics include acrylonitrile butadiene styrene (ABS), cellulose acetate butyrate (CAB), polycarbonate (PC), nylon (PA), and acetals. These resins are frequently used in consumer applications. [Pg.41]

Commercial interest in RO began with the first high-flux, high-NaCl-retention Loeb-Sourirajan anisotropic cellulose acetate membrane. Practical application began with the thin film composite (TFC) membrane and implementation for seawater desalination at Jeddah, Saudi Arabia [Muhurji et ak. Desalination, 76, 75 (1975)]. [Pg.45]

The predominant RO membranes used in water applications include cellulose polymers, thin film oomposites (TFCs) consisting of aromatic polyamides, and crosslinked polyetherurea. Cellulosic membranes are formed by immersion casting of 30 to 40 percent polymer lacquers on a web immersed in water. These lacquers include cellulose acetate, triacetate, and acetate-butyrate. TFCs are formed by interfacial polymerization that involves coating a microporous membrane substrate with an aqueous prepolymer solution and immersing in a water-immiscible solvent containing a reactant [Petersen, J. Memhr. Sol., 83, 81 (1993)]. The Dow FilmTec FT-30 membrane developed by Cadotte uses 1-3 diaminobenzene prepolymer crosslinked with 1-3 and 1-4 benzenedicarboxylic acid chlorides. These membranes have NaCl retention and water permeability claims. [Pg.47]

The compound exists normally as the trans or ( )-isomer 21a. This molecule is essentially planar both in the solid state and in solution, although in the gas phase there is evidence that it deviates from planarity. When irradiated with UY light, the ( )-isomer undergoes conversion substantially into the cis or (Z)-isomer 21b which may be isolated as a pure compound. In darkness, the (Z)-isomer reverts thermally to the (F)-isomer which is thermodynamically more stable because of reduced steric congestion. Some early disperse dyes, which were relatively simple azobenzene derivatives introduced commercially initially for application to cellulose acetate fibres, were found to be prone to photochromism (formerly referred to as phototropy), a reversible light-induced colour change. C. I. Disperse Red 1 (22) is an example of a dye which has been observed, under certain circumstances, to give rise to this phenomenon. [Pg.47]


See other pages where Cellulose acetate applications is mentioned: [Pg.295]    [Pg.354]    [Pg.92]    [Pg.1119]    [Pg.295]    [Pg.354]    [Pg.92]    [Pg.1119]    [Pg.300]    [Pg.447]    [Pg.2036]    [Pg.100]    [Pg.449]    [Pg.623]    [Pg.624]    [Pg.886]    [Pg.173]    [Pg.253]    [Pg.459]    [Pg.14]    [Pg.45]    [Pg.9]   


SEARCH



Applications cellulose

Cellulose acetate

Cellulose acetate industrial applications

Cellulosics cellulose acetate

Secondary cellulose acetate Applications

Tubular cellulose acetate applications

© 2024 chempedia.info