Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anodic compounds

Sigaia et al. [86] also examined LiA.MV04 (M = Zn, Co, Ni, Cd) as anode materials. The best compounds (M = Zn, Ni) deliver capacities of about 700 mAh g"1 after 200 cycles. The search for new anode compounds will prove to be a fruitful area in the future. [Pg.353]

In those cases where the anodic compound formed by the action of the discharged anions upon the anode metal is insoluble, i.e. lead sulphate formed by the action of sulphate ions upon a lead anode, the anode is speedily covered with the insoluble product, and further action is prevented. Luckow1 showed that this difficulty can be obviated by using a considerable quantity of a secondary salt (sodium chlorate), the anions of which attack the anode and crowd out the anions of the primary salt, so that precipitation takes place a short distance from the anode, and the product falls continuously to the bottom of the vat instead of clinging to the anode surface. [Pg.42]

Other compounds are of industrial value lead chromate is chrome yellow, a valued pigment. Chromium compounds are used in the textile industry as mordants, and by the aircraft and other industries for anodizing aluminum. [Pg.69]

In adsorptive stripping voltammetry the deposition step occurs without electrolysis. Instead, the analyte adsorbs to the electrode s surface. During deposition the electrode is maintained at a potential that enhances adsorption. For example, adsorption of a neutral molecule on a Hg drop is enhanced if the electrode is held at -0.4 V versus the SCE, a potential at which the surface charge of mercury is approximately zero. When deposition is complete the potential is scanned in an anodic or cathodic direction depending on whether we wish to oxidize or reduce the analyte. Examples of compounds that have been analyzed by absorptive stripping voltammetry also are listed in Table 11.11. [Pg.519]

Further improvements in anode performance have been achieved through the inclusion of certain metal salts in the electrolyte, and more recently by dkect incorporation into the anode (92,96,97). Good anode performance has been shown to depend on the formation of carbon—fluorine intercalation compounds at the electrode surface (98). These intercalation compounds resist further oxidation by fluorine to form (CF ), have good electrical conductivity, and are wet by the electrolyte. The presence of certain metals enhance the formation of the intercalation compounds. Lithium, aluminum, or nickel fluoride appear to be the best salts for this purpose (92,98). [Pg.127]

Ethylene glycol can be produced by an electrohydrodimerization of formaldehyde (16). The process has a number of variables necessary for optimum current efficiency including pH, electrolyte, temperature, methanol concentration, electrode materials, and cell design. Other methods include production of valuable oxidized materials at the electrochemical cell s anode simultaneous with formation of glycol at the cathode (17). The compound formed at the anode maybe used for commercial value direcdy, or coupled as an oxidant in a separate process. [Pg.359]

Tetravalent lead is obtained when the metal is subjected to strong oxidizing action, such as in the electrolytic oxidation of lead anodes to lead dioxide, Pb02 when bivalent lead compounds are subjected to powerful oxidizing conditions, as in the calcination of lead monoxide to lead tetroxide, Pb O or by wet oxidation of bivalent lead ions to lead dioxide by chlorine water. The inorganic compounds of tetravalent lead are relatively unstable eg, in the presence of water they hydrolyze to give lead dioxide. [Pg.67]

The purple permanganate ion [14333-13-2], MnOu can be obtained from lower valent manganese compounds by a wide variety of reactions, eg, from manganese metal by anodic oxidation from Mn(II) solution by oxidants such as o2one, periodate, bismuthate, and persulfate (using Ag" as catalyst), lead peroxide in acid, or chlorine in base or from MnO by disproportionation, or chemical or electrochemical oxidation. [Pg.515]

The most significant nonferrous use of manganese compounds is for primary batteries, where manganese dioxide is the principal constituent of the cathode mix. In the standard Leclanchn ceU, 2inc and ammonium chloride are mixed to form the electrolyte, a mixture of carbon and MnO forms the cathode, and 2inc acts as the anode (221). The principal ceU reaction is as foUows ... [Pg.526]

Functionalized conducting monomers can be deposited on electrode surfaces aiming for covalent attachment or entrapment of sensor components. Electrically conductive polymers (qv), eg, polypyrrole, polyaniline [25233-30-17, and polythiophene/23 2JJ-J4-j5y, can be formed at the anode by electrochemical polymerization. For integration of bioselective compounds or redox polymers into conductive polymers, functionalization of conductive polymer films, whether before or after polymerization, is essential. In Figure 7, a schematic representation of an amperomethc biosensor where the enzyme is covalendy bound to a functionalized conductive polymer, eg, P-amino (polypyrrole) or poly[A/-(4-aminophenyl)-2,2 -dithienyl]pyrrole, is shown. Entrapment of ferrocene-modified GOD within polypyrrole is shown in Figure 7. [Pg.46]

Batteries. Many batteries intended for household use contain mercury or mercury compounds. In the form of red mercuric oxide [21908-53-2] mercury is the cathode material in the mercury—cadmium, mercury—indium—bismuth, and mercury—zinc batteries. In all other mercury batteries, the mercury is amalgamated with the zinc [7440-66-6] anode to deter corrosion and inhibit hydrogen build-up that can cause cell mpture and fire. Discarded batteries represent a primary source of mercury for release into the environment. This industry has been under intense pressure to reduce the amounts of mercury in batteries. Although battery sales have increased greatly, the battery industry has aimounced that reduction in mercury content of batteries has been made and further reductions are expected (3). In fact, by 1992, the battery industry had lowered the mercury content of batteries to 0.025 wt % (3). Use of mercury in film pack batteries for instant cameras was reportedly discontinued in 1988 (3). [Pg.109]

Commercial metal anodes for the chlorine industry came about after the late 1960s when a series of worldwide patents were awarded (6—8). These were based not on the use of the platinum-group metals (qv) themselves, but on coatings comprised of platinum-group metal oxides or a mixture of these oxides with valve metal oxides, such as titanium oxide (see Platinum-GROUP metals, compounds Titanium compounds). In the case of chlor-alkaH production, the platinum-group metal oxides that proved most appropriate for use as coatings on anodes were those of mthenium and iridium. [Pg.119]

Metals less noble than copper, such as iron, nickel, and lead, dissolve from the anode. The lead precipitates as lead sulfate in the slimes. Other impurities such as arsenic, antimony, and bismuth remain partiy as insoluble compounds in the slimes and partiy as soluble complexes in the electrolyte. Precious metals, such as gold and silver, remain as metals in the anode slimes. The bulk of the slimes consist of particles of copper falling from the anode, and insoluble sulfides, selenides, or teUurides. These slimes are processed further for the recovery of the various constituents. Metals less noble than copper do not deposit but accumulate in solution. This requires periodic purification of the electrolyte to remove nickel sulfate, arsenic, and other impurities. [Pg.176]

Nickel acetate tetrahydrate [6018-89-9] Ni(C2H202) 4H2O, is a green powder which has an acetic acid odor, density 1.74 g/cm. When heated, it loses its water of crystallization and then decomposes to form nickel oxide. Nickel acetate is used as a catalyst intermediate, as an intermediate in the formation of other nickel compounds, as a dye mordant, as a sealer for anodized aluminum, and in nickel electroplating (59). [Pg.13]

The most common oxidation states and the corresponding electronic configuration of mthenium are +2 and +3 (t5 ). Compounds are usually octahedral. Compounds in oxidations states from —2 and 0 (t5 ) to +8 have various coordination geometries. Important appHcations of mthenium compounds include oxidation of organic compounds and use in dimensionally stable anodes (DSA). [Pg.177]

Miscellaneous. Ruthenium dioxide-based thick-film resistors have been used as secondary thermometers below I K (92). Ruthenium dioxide-coated anodes ate the most widely used anode for chlorine production (93). Ruthenium(IV) oxide and other compounds ate used in the electronics industry as resistor material in apphcations where thick-film technology is used to print electrical circuits (94) (see Electronic materials). Ruthenium electroplate has similar properties to those of rhodium, but is much less expensive. Electrolytes used for mthenium electroplating (95) include [Ru2Clg(OH2)2N] Na2[Ru(N02)4(N0)0H] [13859-66-0] and (NH 2P uds(NO)] [13820-58-1], Several photocatalytic cycles that generate... [Pg.178]

The Uniroyal process differs from that of American anode, principally in that the first dip is in the latex compound rather than in the coagulant. The resulting thin mbber film acts as a carrier for a coagulant subsequently absorbed by it. Volatile acids, eg, formic, acetic, or lactic acid, or cyclohexylamine dissolved in alcohol or acetone or both, have generally been used in this process, but in the 1990s water is more commonly used than ethanol. [Pg.259]

In dipping generally, but particularly with the anode process, it is desirable to use tanks that circulate the coagulant and latex compound, particularly the latter. Use of circulation keeps the Hquid surface clean and free from lumps, scum, or bubbles. Mechanical circulation can cause mbber particle instabihty, however, and eventually coagulate the compound. Therefore, tanks should be designed to minimize friction or shear action, and the compound stabilized to maintain mechanical stabiUty. [Pg.259]


See other pages where Anodic compounds is mentioned: [Pg.1136]    [Pg.367]    [Pg.325]    [Pg.1136]    [Pg.367]    [Pg.325]    [Pg.178]    [Pg.237]    [Pg.408]    [Pg.9]    [Pg.521]    [Pg.644]    [Pg.669]    [Pg.924]    [Pg.929]    [Pg.996]    [Pg.402]    [Pg.269]    [Pg.55]    [Pg.224]    [Pg.225]    [Pg.251]    [Pg.428]    [Pg.520]    [Pg.120]    [Pg.130]    [Pg.175]    [Pg.10]    [Pg.462]    [Pg.93]    [Pg.176]    [Pg.259]   
See also in sourсe #XX -- [ Pg.146 ]




SEARCH



Anodic Dissolution of III-V Compound Semiconductors

Anodic Oxidation of Heterocyclic Compounds

Anodic Oxidation of Nitrogen-Containing Compounds

Anodic Oxidation of Phosphorus Compounds

Anodic Oxidation of Sulfur Compounds

Anodic hydroxylation aromatic compounds

Anodic organometallic compounds

Anodic oxidation aromatic compounds

Anodic oxidation compounds

Anodic oxidation unsaturated compounds

Carbonyl compounds anodic

Selective anodic fluorination compounds

Sulfur-containing compounds anodic processes

© 2024 chempedia.info