Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anode localized

Fig. 10 SEM pictures of cross sections of a partially re-oxidized sample (a) area close to the surface (local DoO 100%), (b) area close to the anode (local DoO 0%)... Fig. 10 SEM pictures of cross sections of a partially re-oxidized sample (a) area close to the surface (local DoO 100%), (b) area close to the anode (local DoO 0%)...
Local acidification of anodes Localized acidification of anodes due to the formation of iron sulphide corrosion products None... [Pg.1286]

As the chloride content increases, not only does the electrical conductivity of the electrolyte solution, and thus the activity of the corroding elements, increase. The capacity of the solution to penetrate through protective layers and stabilise anodes locally increases as well. The chloride content drops rapidly as one moves away from the sea. How far away from the coast its influence is still felt depends to a large extent on wind force and wind direction as well as on wave height and cannot be stated in general terms. Normally, the influence of seawater salts can be ignored at a distance of about 1 km from the coast. Frequent and heavy rains can reduce corro-... [Pg.156]

The passive state of a metal can, under certain circumstances, be prone to localized instabilities. Most investigated is the case of localized dissolution events on oxide-passivated surfaces [51, 106, 107, 108, 109, 110, ill, 112, 113, 114, 115, 116, 117 and 118]. The essence of localized corrosion is that distinct anodic sites on the surface can be identified where the metal oxidation reaction (e.g. Fe —> Fe + 2e ) dominates, surrounded by a cathodic zone where the reduction reaction takes place (e.g. 2Fi + 2e —> Fi2). The result is the fonnation of an active pit in the metal, an example of which is illustrated in figure C2.8.6(a) and (b). [Pg.2726]

In an electrochemical polarization experiment on a passive system tire onset of localized dissolution can be detected by a steep current increase at a very distinct anodic potential (tire pitting potential, —see figure... [Pg.2727]

From an electrochemical viewpoint, stable pit growtli is maintained as long as tire local environment witliin tire pit keeps tire pit under active conditions. Thus, tire effective potential at tire pit base must be less anodic tlian tire passivation potential (U ) of tire metal in tire pit electrolyte. This may require tire presence of voltage-drop (IR-drop) elements. In tliis respect the most important factor appears to be tire fonnation of a salt film at tire pit base. (The salt film fonns because tire solubility limit of e.g. FeCl2 is exceeded in tire vicinity of tire dissolving surface in tlie highly Cl -concentrated electrolyte.)... [Pg.2727]

In all cases of localized corrosion, tlie ratio of the catliodic to tlie anodic area plays a major role in tlie localized dissolution rate. A large catliodic area provides high catliodic currents and, due to electroneutrality requirements, tlie small anodic area must provide a high anodic current. Hence, tlie local current density, i.e., local corrosion rate, becomes higher witli a larger catliode/anode-ratio. [Pg.2728]

This is essentially a corrosion reaction involving anodic metal dissolution where the conjugate reaction is the hydrogen (qv) evolution process. Hence, the rate depends on temperature, concentration of acid, inhibiting agents, nature of the surface oxide film, etc. Unless the metal chloride is insoluble in aqueous solution eg, Ag or Hg ", the reaction products are removed from the metal or alloy surface by dissolution. The extent of removal is controUed by the local hydrodynamic conditions. [Pg.444]

Aqueous Corrosion. Several studies have demonstrated that ion implantation may be used to modify either the local or generalized aqueous corrosion behavior of metals and alloys (119,121). In these early studies metallic systems have been doped with suitable elements in order to systematically modify the nature and rate of the anodic and/or cathodic half-ceU reactions which control the rate of corrosion. [Pg.398]

Copper-containing lead alloys undergo less corrosion in sulfuric acid or sulfate solutions than pure lead or other lead alloys. The uniformly dispersed copper particles give rise to local cells in which lead forms the anode and copper forms the cathode. Through this anodic corrosion of the lead, an insoluble film of lead sulfate forms on the surface of the lead, passivating it and preventing further corrosion. The film, if damaged, rapidly reforms. [Pg.60]

Atmospheric corrosion is electrochemical ia nature and depends on the flow of current between anodic and cathodic areas. The resulting attack is generally localized to particular features of the metallurgical stmcture. Features that contribute to differences ia potential iaclude the iatermetaUic particles and the electrode potentials of the matrix. The electrode potentials of some soHd solutions and iatermetaUic particles are shown ia Table 26. Iron and sUicon impurities ia commercially pure aluminum form iatermetaUic coastitueat particles that are cathodic to alumiaum. Because the oxide film over these coastitueats may be weak, they can promote electrochemical attack of the surrounding aluminum matrix. The superior resistance to corrosion of high purity aluminum is attributed to the small number of these constituents. [Pg.125]

The formation of anodic and cathodic sites, necessary to produce corrosion, can occur for any of a number of reasons impurities in the metal, localized stresses, metal grain size or composition differences, discontinuities on the surface, and differences in the local environment (eg, temperature, oxygen, or salt concentration). When these local differences are not large and the anodic and cathodic sites can shift from place to place on the metal surface, corrosion is uniform. With uniform corrosion, fouling is usually a more serious problem than equipment failure. [Pg.266]

Localized corrosion, which occurs when the anodic sites remain stationary, is a more serious industrial problem. Forms of localized corrosion include pitting, selective leaching (eg, dezincification), galvanic corrosion, crevice or underdeposit corrosion, intergranular corrosion, stress corrosion cracking, and microbiologicaHy influenced corrosion. Another form of corrosion, which caimot be accurately categorized as either uniform or localized, is erosion corrosion. [Pg.266]

Many of the by-products of microbial metaboHsm, including organic acids and hydrogen sulfide, are corrosive. These materials can concentrate in the biofilm, causing accelerated metal attack. Corrosion tends to be self-limiting due to the buildup of corrosion reaction products. However, microbes can absorb some of these materials in their metaboHsm, thereby removing them from the anodic or cathodic site. The removal of reaction products, termed depolari tion stimulates further corrosion. Figure 10 shows a typical result of microbial corrosion. The surface exhibits scattered areas of localized corrosion, unrelated to flow pattern. The corrosion appears to spread in a somewhat circular pattern from the site of initial colonization. [Pg.268]

Precipita.tingInhibitors. As discussed earlier, the localized pH at the cathode of the corrosion cell is elevated due to the generation of hydroxide ions. Precipitating inhibitors form complexes that are insoluble at this high pH (1—2 pH units above bulk water), but whose deposition can be controlled at the bulk water pH (typically 7—9 pH). A good example is zinc, which can precipitate as hydroxide, carbonate, or phosphate. Calcium carbonate and calcium orthophosphate are also precipitating inhibitors. Orthophosphate thus exhibits a dual mechanism, acting as both an anodic passivator and a cathodic precipitator. [Pg.270]

In most aqueous systems, the corrosion reaction is divided into an anodic portion and a cathodic portion, occurring simultaneously at discrete points on metallic surfaces. Flow of electricity from the anodic to the cathodic areas may be generated by local cells set up either on a single metallic surface (because of local point-to-point differences on the surface) or between dissimilar met s. [Pg.2417]

Attack associated with nonuniformity of the aqueous environments at a surface is called concentration cell corrosion. Corrosion occurs when the environment near the metal surface differs from region to region. These differences create anodes and cathodes (regions differing in electrochemical potential). Local-action corrosion cells are established, and anodic areas lose metal by corrosion. Shielded areas are particularly susceptible to attack, as they often act as anodes (Fig. 2.1). Differences in concentration of dissolved ions such as hydrogen, oxygen, chloride, sulfate, etc. eventually develop between shielded and nearby regions. [Pg.9]

Figure 2.1 Region of local action cells in an alloy immersed in an electrolyte. 1. Crevice, 2. pit, 3. deposit. Shaded regions are anodic (+) to surrounding metal (-). Figure 2.1 Region of local action cells in an alloy immersed in an electrolyte. 1. Crevice, 2. pit, 3. deposit. Shaded regions are anodic (+) to surrounding metal (-).
This occurs whcti two dissimilar metals in an electrolyte have a tnelallic tie between them. There is a How of electricity between the anodic and cathodic metal surfaces, generated by the local cells set between dissimilar mentis. One metal becomes an anode and the other a cathode and causes an anodic reactioti w hieh represents acquisition of charges by the corroding melal. The anode corrodes tind protects the cathode, as current flows through the electrolyte between them. [Pg.702]

Electrical conductivity is of interest in corrosion processes in cell formation (see Section 2.2.4.2), in stray currents, and in electrochemical protection methods. Conductivity is increased by dissolved salts even though they do not take part in the corrosion process. Similarly, the corrosion rate of carbon steels in brine, which is influenced by oxygen content according to Eq. (2-9), is not affected by the salt concentration [4]. Nevertheless, dissolved salts have a strong indirect influence on many local corrosion processes. For instance, chloride ions that accumulate at local anodes can stimulate dissolution of iron and prevent the formation of a film. Alkali ions are usually regarded as completely harmless, but as counterions to OH ions in cathodic regions, they result in very high pH values and aid formation of films (see Section 2.2.4.2 and Chapter 4). [Pg.34]

Equation (2-38) is valid for every region of the surface. In this case only weight loss corrosion is possible and not localized corrosion. Figure 2-5 shows total and partial current densities of a mixed electrode. In free corrosion 7 = 0. The free corrosion potential lies between the equilibrium potentials of the partial reactions and U Q, and corresponds in this case to the rest potential. Deviations from the rest potential are called polarization voltage or polarization. At the rest potential = ly l, which is the corrosion rate in free corrosion. With anodic polarization resulting from positive total current densities, the potential becomes more positive and the corrosion rate greater. This effect is known as anodic enhancement of corrosion. For a quantitative view, it is unfortunately often overlooked that neither the corrosion rate nor its increase corresponds to anodic total current density unless the cathodic partial current is negligibly small. Quantitative forecasts are possible only if the Jq U) curve is known. [Pg.44]

Two areas of passivity are located in Fig. 2-2 where Fe has a very low corrosion rate. In contrast to cathodically protected metals in groups I and II, the corrosion rate of anodically passivated metals in groups III and IV cannot in principle be zero. In most cases the systems belong to group IV where intensified weight loss corrosion or local corrosion occurs when U > U" There are only a few metals belonging to group III e.g., Ti, Zr [44] and A1 in neutral waters free of halides. [Pg.59]

Heterogeneous surface areas consist of anodic regions at corrosion cells (see Section 2.2.4.2) and objects to be protected which have damaged coating. Local concentrations of the current density develop in the area of a defect and can be determined by measurements of field strength. These occur at the anode in a corrosion cell in the case of free corrosion or at a holiday in a coated object in the case of impressed current polarization (e.g., cathodic protection). Such methods are of general interest in ascertaining the corrosion behavior of metallic construction units... [Pg.123]

The principle of the measurement is described with the help of Fig. 2-7 [50]. Potential measurement is not appropriate in pipelines due to defective connections or too distant connections and low accuracy. Measurements of potential difference are more effective. Figure 3-24 contains information on the details in the neighborhood of a local anode the positions of the cathodes and reference electrodes (Fig. 3-24a), a schematic representation of the potential variation (Fig. 3-24b), and the derived values (Fig. 3-24c). Figure 2-8 should be referred to in case of possible difficulties in interpreting the potential distribution and sign. The electrical potentials of the pipeline and the reference electrodes are designated by... [Pg.124]


See other pages where Anode localized is mentioned: [Pg.124]    [Pg.404]    [Pg.278]    [Pg.318]    [Pg.17]    [Pg.31]    [Pg.124]    [Pg.404]    [Pg.278]    [Pg.318]    [Pg.17]    [Pg.31]    [Pg.112]    [Pg.2714]    [Pg.2726]    [Pg.2753]    [Pg.127]    [Pg.379]    [Pg.309]    [Pg.428]    [Pg.428]    [Pg.528]    [Pg.521]    [Pg.144]    [Pg.277]    [Pg.2435]    [Pg.111]    [Pg.645]    [Pg.46]    [Pg.48]    [Pg.124]    [Pg.125]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



Local Anodes

Localized anodization

© 2024 chempedia.info