Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aniline Subject

Anilines react with ct-haloacetophenones to give 2-arylindoles. In a typical procedure an W-phenacylaniline is heated with a tw o-fold excess of the aniline hydrobromide to 200-250°C[1]. The mechanism of the reaction was the subject of considerable investigation in the 1940s[2]. A crucial aspect of the reaction seems to be the formation of an imine of the acetophenone which can isomerize to an aldimine intermediate. This intermediate apparently undergoes cyclization more rapidly (path bl -> b2) than its precursor (Scheme 7.3). Only with very reactive rings, e.g, 3,5-dimethoxyaniline, has the alternative cydiz-ation (path al a2) to a 3-arylindole been observed and then only under modified reaction conditions[3],... [Pg.77]

To produce a moulding composition, aniline is first treated with hydrochloric acid to produce water-soluble aniline hydrochloride. The aniline hydrochloride solution is then run into a large wooden vat and formaldehyde solution is run in at a slow but uniform rate, the whole mix being subject to continuous agitation. Reaction occurs immediately to give a deep orange-red product. The resin is still a water-soluble material and so it is fed into a 10% caustic soda solution to react with the hydrochloride, thus releasing the resin as a creamy yellow slurry. The slurry is washed with a counter-current of fresh water, dried and ball-milled. [Pg.690]

The residual oil is subjected to distillation under reduced pressure, the fraction boiling in the range of 185°Cto 198°C/4 mm Hg being collected. Purification of the fraction by redistillation under reduced pressure gives 22.5 parts by weight of N-(2-piperidinoethyl)-N-(2-pyridyl-methylj-aniline which boils at 195°C to 196°C/4 mm Hg. Yield 76.3%. [Pg.1231]

Tu found that when aniline was used instead of the secondary amine under otherwise identical conditions 2,4-diphenyl-substituted quinoline was formed in 56% yield. Phenylacetylene and aniline were initially used as model substrates for exploring the aldehyde scope. With aromatic aldehydes the reactions proceeded smoothly to give the corresponding quinolines in moderate to good yields. A heteroaromatic aldehyde is also compatible with this transformation and the expected product was afforded in 83% yield. However, when ahphatic aldehydes were subjected to the reaction, the desired product was obtained in low yield (Scheme 19) [34]. [Pg.14]

Historically, the first condnctive polymer was prepared along route (2) but at the time not recognized Letheby in 1862 ( ) subjected aniline to anodic oxidation in sulfuric acid. [Pg.458]

The large scale preparation of the drug candidate 2 was accomplished via the Sugasawa reaction (an ortho-selective Friedel-Craft acylation on anilines) and the asymmetric addition to ketimines. Understanding the reaction mechanism and reaction parameters is the only way to gain confidence that the reactions will perform as required upon scale up. Below we discuss both subjects in detail. [Pg.10]

Dyed aniline is spectrophotometrically indistinguishable from dyed parathion, within the visible range. However, when purified cyclohexylamine (7.6 X 10 5 M) is subjected to the analytical procedure there is no color development. [Pg.86]

Reduction of the newly introduced nitro moiety affords aniline 40. This is then subjected to the familiar condensation-cyclization sequence to give antimalarial... [Pg.370]

Some time ago, Holliman and co-workers illustrated a method for synthesizing polysubstituted phenazines by reductive cyclization of o-nitrodiphenylamine. However, the yield was poor when competitive cyclizations occurred <70CC1423>. Recently, Kamikawa and co-workers reported a more efficient method to synthesize phenazines using sequential aniline arylation, which was first introduced by Buchwald <97JOC1264>. Regioselective bromination of o-nitrodiphenylamine 226 with bromine in the presence of sodium bicarbonate yielded 227 which was subjected to the Buchwald conditions to provide the desired phenazine 228 and the eliminated product 229 <00TL355>. The former compound is a proposed intermediate for the synthesis of the radical scavenger benthocyanin A. [Pg.286]

Bimolecular reactions of aniline with /V-acyloxy-/V-alkoxyamides are model Sn2 processes in which reactivity is dictated by a transition state that resembles normal Sn2 processes at carbon. Electronic influences of substituents support a non-synchronous process which has strong charge separation at the transition state and which is subject to steric effects around the reactive centre, at the nucleophile but not on the leaving group. The sp3 character of nitrogen and disconnection between the amino group and the amide carbonyl renders these reactions analogous to the displacement of halides in a-haloketones. [Pg.81]

In several examples including nitroanilines, the effect of twisting the chromophore from planarity decreases the absorption intensities. The reasons for the bathochromic effect as the angles of twist in the 4-aniline series increase is subject to discussion. When considering this (as well as in all attempts to obtain definitions of polarity of solvents by quantitative parameters) it is important to exclude or minimize the presence of hydrogen bonding overlapping158 other interactions. [Pg.443]

After extraction, the urethanated films were subjected to alkaline hydrolysis of urethanes to liberate the corresponding amines, while the adipoylated films were hydrolyzed after having reacted with 7-hydroxycoumarin. Amounts of the released amines and coumarin were determined by fluorescence spectroscopy as described in the Experimental section. Since aniline as well as butylamine has no appreciable fluorescence by themselves, their fluorescence assay was made after reacting with o-phthalaldehyde in the presence of mercaptoethanol. In Figure 3, where relative fluorescence intensities are plotted as a function of concentrations of amines and hydroxycoumarin, one can see that the fluorescence intensities vary linearly with their concentration to permit us the quantitative determination of extremely small amounts of amines and hydroxycoumarin. [Pg.395]

Larson et al. (1992) studied the photosensitizing ability of 2, 3, 4, 5 -tetraacetylriboflavin to various organic compounds. An aqueous solution containing aniline was subjected to a medium-pressure mercury arc lamp (X >290 nm). The investigators reported that 2, 3, 4, 5 -tetraacetylribofiavin was superior to another photosensitizer, namely riboflavin, in degrading aniline. Direct photolysis of aniline without any photosensitizer present resulted in a half-life of 23 h. In the presence of riboflavin and 2, 3, 4, 5 -tetraacetylribofiavin, the half-lives were 1 min and 45 sec, respectively. Photoproducts identified in both reactions were azobenzene, phenazine, and azoxybenzene. [Pg.106]

It is a well established fact that the preferred site of protonation of aniline in solution is the nitrogen atom, due to the higher stabilization upon solvatation of the N-protonated species with respect to the ring protonated ion (/). In the gas phase however, the situation is less clear, and the preferred site of protonation has been the subject of many experimental and theoretical studies. Based on proton transfer equilibria at 600 K and upon correlation of the proton affinities... [Pg.184]

Poly[(aniline-2-chloroaniline)-4-toluenesulfonic acid salt] was obtained by oxidative copolymerization of aniline with 2-chloroaniline in solutions containing 4-toluenesulfonic acid. The copolymer salt was subjected to heat treatment under nitrogen atmosphere at elevated (about 150°C) temperatures. The heat-treated samples acquired electric conductivity of 2.7 X 10 f2 cm . According to ESR spectra, the heated poly[(aniline-2-chloroaniline)-4-toluenesulfonic salt] exists as the poly(semiquinone imine ion-radical) in which unpaired electrons are localized on or near the nitrogen atoms (Palaniappan 1997). [Pg.50]

The combination of allylic amination, ring-closing metathesis, and a free radical cyclization provides a convenient approach to the dihydrobenzo[b]indoline skeleton, as illustrated in Scheme 10.10. The rhodium-catalyzed aUylic amination of 43 with the lithium anion of 2-iodo-(N-4-methoxybenzenesulfonyl)arrihne furnished the corresponding N-(arylsulfonyl)aniline 44. The diene 44 was then subjected to ring-closing metathesis and subsequently treated with tris(trimethylsilyl)silane and triethylborane to afford the dihydrobenzojhjindole derivative 46a in 85% yield [14, 43]. [Pg.205]

Further donors, mainly based on aniline or ferrocene, were subjected to the sarcosin-based Prato reaction. The bisaldehydes 224 [260] or 227 [250] react with two CgQ-molecules, leading to dumbbell shaped dimers (Table 4.9). The Cgo dimer obtained from 224 could be considered as an A-D-A triad but the CV-data indicate that the dimer behaves electrochemically as two independent donor-acceptor units. [Pg.146]

Quinolones are obtained in the Conrad-Limpach-Knorr synthesis, which is subject to either kinetic or thermodynamic control, when aniline is reacted with a 3-keto ester (Scheme 3.11a). At room temperature the more reactive keto group combines with the aniline nitrogen atom, leading to an enamino ester the kinetic product. Cyclization of this product to a 4-quinolone requires heating at 250 C. [Pg.49]

Condensation products of 4(5//)-oxazolonium salts with aldehydes and orthoesters are the subject of a series of papers by Kosulina and co-workers Reaction of 2-methyl-4(5//)-oxazolonium perchlorates 44 with an ortho ester gives rise to an enol ether, which reacts with furanamides to afford the frani-eneamides 45 (Scheme 6.14). " Using electron deficient anilines in a three component condensation affords either 46 or 47 in 64-80% and 78-84% yields, respectively, depending on whether the reaction is performed in acetic acid or acetic anhydride. Electron-rich anilines are unreactive since they are merely protonated by the perchloric acid present in the reaction medium. ... [Pg.63]


See other pages where Aniline Subject is mentioned: [Pg.189]    [Pg.517]    [Pg.189]    [Pg.517]    [Pg.230]    [Pg.296]    [Pg.650]    [Pg.93]    [Pg.464]    [Pg.68]    [Pg.680]    [Pg.295]    [Pg.142]    [Pg.55]    [Pg.67]    [Pg.200]    [Pg.57]    [Pg.711]    [Pg.345]    [Pg.309]    [Pg.303]    [Pg.240]    [Pg.172]    [Pg.326]    [Pg.200]    [Pg.876]    [Pg.101]    [Pg.887]    [Pg.911]    [Pg.71]    [Pg.238]    [Pg.56]    [Pg.566]    [Pg.232]   
See also in sourсe #XX -- [ Pg.1099 ]




SEARCH



Aniline, basicity Subject

Arylated anilines Subject

Ring-substituted anilines Subject

Subject 2- -, reaction with aniline

Subject aniline derivative

© 2024 chempedia.info