Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel-Crafts acylation selectivity

Table 10.10. Substrate and Position Selectivity in Friedel-Crafts Acylation Reactions... Table 10.10. Substrate and Position Selectivity in Friedel-Crafts Acylation Reactions...
As a demonstration of the complete synthesis of a pharmaceutical in an ionic liquid, Pravadoline was selected, as the synthesis combines a Friedel-Crafts reaction and a nucleophilic displacement reaction (Scheme 5.1-24) [53]. The allcylation of 2-methylindole with l-(N-morpholino)-2-chloroethane occurs readily in [BMIM][PF6] and [BMMIM][PF6] (BMMIM = l-butyl-2,3-dimethylimida2olium), in 95-99 % yields, with potassium hydroxide as the base. The Friedel-Crafts acylation step in [BMIM][PF6] at 150 °C occurs in 95 % yield and requires no catalyst. [Pg.186]

The large scale preparation of the drug candidate 2 was accomplished via the Sugasawa reaction (an ortho-selective Friedel-Craft acylation on anilines) and the asymmetric addition to ketimines. Understanding the reaction mechanism and reaction parameters is the only way to gain confidence that the reactions will perform as required upon scale up. Below we discuss both subjects in detail. [Pg.10]

In 1978, Sugasawa et al., at Shionogi Pharmaceutical Co. reported ortho-selective Friedel-Craft acylation with free anilines with nitrile derivatives [4]. Sugasawa reported that the reaction requires two different Lewis acids (BC13 and A1C13) and does not proceed when N,N-dialkyl anilines are used. He proposed that boron bridging between nitriles and anilines led to exclusive ortho-acylation but a conclusive mechanism was not elucidated. The report did not offer any reason why two different Lewis acids were required and why the reaction did not progress with N,N-dialkyl anilines. Therefore, we initiated mechanistic studies. [Pg.11]

Friedel-Crafts reactions in the ionic liquid system l-methyl-3-ethylimidazolium chlo-ride-aluminium(ni) chloride can be performed with excellent yields and selectivities, and in the case of anthracene, have been found to be reversible. This ionic liquid has been shown to demonstrate catalytic activity in reactions such as Friedel-Crafts acylations (Surette et al., 1996 Boon et al., 1986) alkylation reactions (Koch et al., 1976),... [Pg.172]

The rather different scheme used to prepare the propionic acid side chain in cicloprofen (52-5) leads to the inclusion of this tricyclic compound in the present chapter, which is intended to deal with monocychc compounds. The synthesis starts with the Friedel-Crafts acylation of the hydrocarbon fluoiene (52-1), with the half-ester of oxalyl chloride to give the a-ketoester (52-2) as the product. The required side chain methyl group is then added by reaction of the product with methylmagnesium bromide this apparently proceeds selectively... [Pg.77]

The structure of the pyridazine-based antidepressant agent minaprine (34-6) departs markedly from both the older tricyclic drugs and the more recent selective serotonin re-uptake inhibitors. There is evidence that the compound acts via a dopa-mimetic route. Friedel-Crafts acylation of benzene with itaconic anhydride (34-1) leads to the keto-acid (34-2). Condensation with hydrazine leads to the formation of the hydrazine and hydrazide bonds the double bond shifts into the ring to give the fully unsaturated pyridazinone (34-3) this is then converted to the chloride (34-4) in the usual way. The displacement of halogen by the amine on 3-(A -morpho-lino)propylamine (34-5) affords (34-6) [36]. [Pg.343]

The association between acetylcholine levels and Alzheimer s disease, as noted more than once previously, has led to the search for novel compounds that raise the level of that neurotransmitter by inhibiting acetylcholinesterase, the agent of its inactivation. The benzisoxazole icopezil (60-8) has undergone several trials against that debilitating disease as a result of selective chohnesterase inhibiting activity in the CNS. Friedel-Crafts acylation of the indolone (60-1) with acetyl chloride affords the methyl ketone (60-2). This is then converted to its oxime and that function acylated with acetic anhydride to yield (60-3). Treatment with pyridinium perbromide... [Pg.420]

Selection of an appropriate solvent for Friedel-Crafts acylation is an important question since solvents are known to affect regioselectivities.8,9 In many cases acylation is carried out in an excess of the reacting aromatic compound. Aromatics, however, are poor solvents for most Lewis acids and therefore, they merely serve as diluent in biphase systems. Carbon disulfide is a reasonably good solvent just as dichloromethane and dichloroethane. Although AICI3 is insoluble in chlorinated hydrocarbons, they dissolve many of the complexes formed between acyl halides and AICI3. Nitrobenzene and nitromethane are also suitable solvents. Moreover, the 1 1 addition complexes they form with AICI3 allow acylations to be performed under mild conditions often without side reactions. [Pg.410]

Fries rearrangement—that is, the transformation of phenolic esters to isomeric hydroxyphenyl ketones—is related to Friedel-Crafts acylations.392,393 Olah et al.394 have found a convenient way to perform the Fries rearrangement of a variety of substituted phenolic esters in the presence of Nafion-H in nitrobenzene as solvent [Eq. (5.153)]. A catalytic amount of Nafion-H is satisfactory, and the catalyst can be recycled. In contrast, Nafion-silica nanocomposites, in general, exhibit low activities in the Fries rearrangement of phenyl acetate to yield isomeric hydroxyacetophe-nones.239,395 In a recent study, BF3-H20 was found to be highly efficient under mild conditions (80°C, 1 h) to transform phenolic esters of aliphatic and aromatic carboxylic acids to ketones (71-99% yields).396 In most cases the para-hydroxyphenyl isomers are formed with high (up to 94%) selectivity. [Pg.618]

The Friedel-Crafts acylation reaction, rapid under the influence of a powerful metal halide catalyst, is very selective. The data gathered in recent studies of the acetylation reaction in ethylene dichloride are presented graphically in Fig. 13. The p-phenyl substituent again deviates from the correlation line. Certain apparently real accelerations exist for the large ra-alkyl groups in this reaction. [Pg.96]

The set of catalysts selected for the dehydration of 2-butanol was also tested for the Friedel-Crafts acylation of anisole [69, 70]. The catalytic test was performed in the liquid phase due to the high boiling points of the reactants and products of this reaction. Anisole was reacted with acetic anhydride at 120 °C in the absence of solvent. In principle, acylation can occur on both the ortho and para positions of anisole. The main product (>99%) over all catalysts in this study was para-methoxyacetophenone, indicating that the reaction predominantly takes place inside the zeolite micropores. The same trend in catalytic activity as in the 2-buta-nol dehydration reaction is observed the conversion of anisole into para-nicihoxy-acetophenone increases upon increasing Ge content of the catalyst (Fig. 9.17) [67]. The main cause of deactivation for this reaction is accumulation of the reaction products inside the micropores of the zeolite. The different behavior of Ge-ZSM-5, compared with ZSM-5, may therefore be due to improved diffusional properties of the former, as the presence of additional meso- and macropores allows for... [Pg.234]

In a third microreactor, the anion of 4-ferf-butyl l-ethyl-2-(diethox-yphosphoryl)succinate was prepared in situ using sodium ethoxide 237 (in EtOH) and the Wittig-Horner olefination with benzaldehyde 116 performed using a residence time of 47 min to afford (E)-ferf-butyl-l-ethyl-2-benzylidenesuccinate 238 in excellent selectivity (89% yield). In a fourth reactor, the acid-catalyzed (TFA 239) ferf-butyl ester deprotection was achieved using a residence time of 5 min at 34 °C and employing DCM as the reaction solvent to afford (E)-3-(ethoxycarbonyl)-4-phenylbut-3-enoic acid 246 in 82% yield. The deprotection was subsequently followed by a Friedel-Crafts acylation, using triethylamine 14 and acetic anhydride 37, to afford 4-acetoxy-naphthalene-2-carboxylic acid ethyl ester 241 in quantitative yield when conducted at 130 °C (residence time = 47 min). [Pg.182]

The selective functionalization of heterocycles is of particular importance, because of the ubiquity of these structures in natural products and pharmaceutical agents. Direct utilization of a C-H bond [1] of heterocycles is a promising method for the preparation of heterocycles because no pre-functionalization is required. Although Friedel-Crafts acylation is the most commonly used method for introduction of keto functionality on an aromatic ring, it is not often applicable to N-heteroarenes because of deactivation of the Lewis acids by the coordination of N-heteroarenes and the electron-deficient aromatic character of N-heteroarenes. [Pg.175]

These catalytic reactions provide a unique pathway for addition of aromatic C-H bonds across C=C bonds. In contrast with Friedel-Crafts catalysts for olefin hydroarylation, the Ru-catalyzed hydrophenylation reactions of a-olefins selectively produce linear alkyl arenes rather than branched products. Although the selectivity is mild, the formation of anti-Markovnikov products is a unique feature of the Ru(II) and Ir(III) catalysts discussed herein. Typically, the preferred route for incorporation of long-chain linear alkyl groups into aromatic substrates is Friedel-Crafts acylation then Clemmensen reduction, and the catalysts described herein provide a more direct route to linear alkyl arenes. [Pg.180]

A -Butylpyridinium tetrafluoroborate, containing dissolved phosphorus pentachloride, allows catalytic Beckmann rearrangement of cyclohexanone oxime giving e-caprolactam with good conversion and selectivity <2001TL403>. The same ionic liquid containing dissolved ytterbium(m) trifluoromethanesulfonate was used to perform Friedel-Crafts acylation of furan and thiophene <2005JIG398>. [Pg.320]

Figure 5.33 presents Friedel-Crafts acylations, taking benzoylations of toluene (top line) and para-tert-butyl toluene (Figure 5.33, bottom) as an example. The methyl group of toluene preferentially directs the benzoyl residue into the para-position. The ortho-benzoylated toluene occurs only as a by-product. In para-tert-butyl toluene both the methyl- and the tert-butyl substituent direct the electrophile towards the ortho-position, since both para-positions are occupied and could at best react with de-ferf-butylation, i.e., in a—sterically hindered — ipso-substitution (cf. Figure 5.5). Indeed, we see reaction ortho to the methyl group and not ortho to the ferf-butyl group. This selectivity can be ascribed to minimized steric interactions in the preferred sigma complex intermediate. Figure 5.33 presents Friedel-Crafts acylations, taking benzoylations of toluene (top line) and para-tert-butyl toluene (Figure 5.33, bottom) as an example. The methyl group of toluene preferentially directs the benzoyl residue into the para-position. The ortho-benzoylated toluene occurs only as a by-product. In para-tert-butyl toluene both the methyl- and the tert-butyl substituent direct the electrophile towards the ortho-position, since both para-positions are occupied and could at best react with de-ferf-butylation, i.e., in a—sterically hindered — ipso-substitution (cf. Figure 5.5). Indeed, we see reaction ortho to the methyl group and not ortho to the ferf-butyl group. This selectivity can be ascribed to minimized steric interactions in the preferred sigma complex intermediate.
In the laboratory, we must often alkylate aromatic compounds that are more expensive than benzene. Because we cannot afford to use a large excess of the starting material, a more selective method is needed. Fortunately, the Friedel-Crafts acylation, discussed in Section 17-11, introduces just one group without danger of polyalkylation or rearrangement. [Pg.781]

Figure 7.26 Selectivity in Friedel-Crafts acylation of ferrocene... Figure 7.26 Selectivity in Friedel-Crafts acylation of ferrocene...
Three reactions, which were known from the literature to be catalyzed by Lewis acids were selected as test reactions. A, was the Reetz alkylation of silyl enol ethers with -butyl chloride for which titanium tetrachloride is known to be useful [52]. B, was the Diels-Alder reaction between furan and acetylenedicarboxylic ester for which aluminium trichloride is a good catalyst [53]. C, was a Friedel-Crafts acylation for which aluminium trichloride is the preferred catalyst [54]. The reactions are summarized in Scheme 6. [Pg.41]

Acylation of alkenes. Friedel-Crafts acylation (AlCl,) of alkenes suffers from lack of selectivity and low yields. The reaction is markedly improved by use of CHdj-Zn/Cu (3, 255) as catalyst. No cyclopropanation is observed. [Pg.437]


See other pages where Friedel-Crafts acylation selectivity is mentioned: [Pg.557]    [Pg.564]    [Pg.566]    [Pg.585]    [Pg.586]    [Pg.130]    [Pg.102]    [Pg.46]    [Pg.71]    [Pg.105]    [Pg.11]    [Pg.337]    [Pg.147]    [Pg.223]    [Pg.1478]    [Pg.199]    [Pg.408]    [Pg.267]    [Pg.630]    [Pg.267]    [Pg.578]    [Pg.233]    [Pg.109]    [Pg.323]    [Pg.52]    [Pg.68]    [Pg.74]    [Pg.158]   
See also in sourсe #XX -- [ Pg.812 ]




SEARCH



Friedel acylation

Selective acylation

© 2024 chempedia.info