Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytic methods problems

Matrix-fortified laboratory blanks consisting of solvent and reagent blanks to determine levels of bias due to matrix effects or analytical method problems. [Pg.28]

Fuzzy logic and fuzzy set theory are applied to various problems in chemistry. The applications range from component identification and spectral Hbrary search to fuzzy pattern recognition or calibrations of analytical methods. [Pg.466]

In Section lA we indicated that analytical chemistry is more than a collection of qualitative and quantitative methods of analysis. Nevertheless, many problems on which analytical chemists work ultimately involve either a qualitative or quantitative measurement. Other problems may involve characterizing a sample s chemical or physical properties. Finally, many analytical chemists engage in fundamental studies of analytical methods. In this section we briefly discuss each of these four areas of analysis. [Pg.8]

Approximate and analytical methods of solving boundary value problems for solids with cracks. [Pg.394]

Another quaHty control problem of multipurpose plants is the clean out for a product change. A test for residual cleaning solvents in the ppm level is a necessity. The best vaHdation of the cleaning process is to develop an analytical method that is able to find the previous product in the new product at a level of not more than 1 ppm. Tests should be mn on at least the first three batches. [Pg.440]

Numerical simulations are designed to solve, for the material body in question, the system of equations expressing the fundamental laws of physics to which the dynamic response of the body must conform. The detail provided by such first-principles solutions can often be used to develop simplified methods for predicting the outcome of physical processes. These simplified analytic techniques have the virtue of calculational efficiency and are, therefore, preferable to numerical simulations for parameter sensitivity studies. Typically, rather restrictive assumptions are made on the bounds of material response in order to simplify the problem and make it tractable to analytic methods of solution. Thus, analytic methods lack the generality of numerical simulations and care must be taken to apply them only to problems where the assumptions on which they are based will be valid. [Pg.324]

If the critical impurities are known, then only a selected list of elements need to be examined, with some improvement in the cost effectiveness of the analysis. However, the list of elements to be included in the qualification analysis is often historical and related to the limitations of the analytical methods previously used for qualification rather than for technological reasons related to the end use of the metal. As a result, problems in application can arise for no obvious reason. The time and cost of extending the impurity list for GDMS analysis to include essentially all elements is minimal, considering the additional information gained. [Pg.621]

I have described Lifshin as a specialist in characterisation . This is almost a contradiction in terms, because the techniques that are sheltered under the characterisation umbrella are so numerous, varied and sophisticated that nobody can be truly expert in them all, even if his entire working time is devoted to the pursuit of characterisation. The problem is more serious for other materials scientists whose primary interest lies elsewhere. As Lifshin has expressed it in the preface to an encyclopedia of materials characterisation (Cahn and Lifshin 1993), scientists and engineers have enough difficulty in keeping up with advances in their own fields without having to be materials characterisation experts. However, it is essential to have enough basic understanding of currently used analytical methods to be able to interact effectively with such experts (my italics). ... [Pg.214]

A successful method to obtain dynamical information from computer simulations of quantum systems has recently been proposed by Gubernatis and coworkers [167-169]. It uses concepts from probability theory and Bayesian logic to solve the analytic continuation problem in order to obtain real-time dynamical information from imaginary-time computer simulation data. The method has become known under the name maximum entropy (MaxEnt), and has a wide range of applications in other fields apart from physics. Here we review some of the main ideas of this method and an application [175] to the model fluid described in the previous section. [Pg.102]

Making a detailed estimate of the full loading of an object by a blast wave is only possible by use of multidimensional gas-dynamic codes such as BLAST (Van den Berg 1990). However, if the problem is sufficiently simplified, analytic methods may do as well. For such methods, it is sufficient to describe the blast wave somewhere in the field in terms of the side-on peak overpressure and the positive-phase duration. Blast models used for vapor cloud explosion blast modeling (Section 4.3) give the distribution of these blast parameters in the explosion s vicinity. [Pg.58]

Exploitation of analytical selectivity. We have seen, in our discussion of the A —> B C series reaction (Scheme IX), that access to the concentration of A as a function of time is valuable because it permits to be easily evaluated. Modern analytical methods, particularly chromatography, constitute a powerful adjunct to kinetic investigations, and they render nearly obsolete some very difficult kinetic problems. For example, the freedom to make use of the pseudoorder technique is largely dependent upon the high sensitivity of analytical methods, which allows us to set one reactant concentration much lower than another. An interesting example of analytical control in the study of the Scheme IX system is the spectrophotometric observation of the reaction solution at an isosbestic point of species B and C, thus permitting the A to B step to be observed. [Pg.79]

One possibility is that the curvature is an artifact introduced by a systematic error in the measurements. This is not unlikely, because rate constants may vary by orders of magnitude over a wide temperature range, necessitating different analytical methods or data treatments in different temperature regions. Careful experimental work should be able to identify such problems. [Pg.251]

At present moment, no generally feasible method exists for the large-scale production of optically pure products. Although for the separation of virtually every racemic mixture an analytical method is available (gas chromatography, liquid chromatography or capillary electrophoresis), this is not the case for the separation of racemic mixtures on an industrial scale. The most widely applied method for the separation of racemic mixtures is diastereomeric salt crystallization [1]. However, this usually requires many steps, making the process complicated and inducing considerable losses of valuable product. In order to avoid the problems associated with diastereomeric salt crystallization, membrane-based processes may be considered as a viable alternative. [Pg.126]

In view of the problems referred to above in connection with direct potentiometry, much attention has been directed to the procedure of potentio-metric titration as an analytical method. As the name implies, it is a titrimetric procedure in which potentiometric measurements are carried out in order to fix the end point. In this procedure we are concerned with changes in electrode potential rather than in an accurate value for the electrode potential with a given solution, and under these circumstances the effect of the liquid junction potential may be ignored. In such a titration, the change in cell e.m.f. occurs most rapidly in the neighbourhood of the end point, and as will be explained later (Section 15.18), various methods can be used to ascertain the point at which the rate of potential change is at a maximum this is at the end point of the titration. [Pg.549]

Let us return to the problem of what type of continuous distribution to choose for the results of an analytical method. The classical choice... [Pg.268]

We shall start out with elementary general topological considerations of flow by studying network flow. We shall follow this by a variety of models from operations research that illustrate analytical methods and problems. No illustrations of statistical methods will be given here because statistics, a fundamental tool of science, is abundantly discussed in the literature of science. [Pg.255]

The last formulation 3rields an analytical method for treating optimal flow. There are special types of linear programming problems (e.g.,... [Pg.261]

We now illustrate another analytical method that uses known methods of physics to treat a concrete flow problem .e., traffic flow. In recent years much effort has been devoted to this problem, whioh occupies the attention of many experts. The reader may wish to pursue the subject at greater length in the literature. [Pg.263]

We have given an analytical method of deriving a time-dependent solution to our problem that is complicated but illustrates an important method. Frequently, steady state solutions are all that is needed. [Pg.279]

The problems involved in quantitative analysis using NMR spectroscopy, have been discussed by several authors and it is evident that it still causes a lot of problems as especially pointed out by Hays55 in his excellent review on the subject. Thus in liquid state NMR spectroscopy the quantitative estimation of atoms and groups involves the use of normal analytical method. In the case of solid state NMR spectroscopy, however, the application of the cross-polarization technique results in signal enhancements and allows repetition rates faster than those allowed by the carbon C-13 Tl. Therefore, the distortion of relative spectral intensities must always be considered a possibility, and hence quantitative spectra will not always be obtained. [Pg.19]

The aim of this chapter is to introduce analytical methods that can be suitably used to overcome most LAB/LAS analytical problems. A particular value was put on newest analytical methods, which can detect byproducts in trace quantities. [Pg.89]

Thin-layer chromatography (TLC) is used both for characterization of alcohol sulfates and alcohol ether sulfates and for their analysis in mixtures. This technique, combined with the use of scanning densitometers, is a quantitative analytical method. TLC is preferred to HPLC in this case as anionic surfactants do not contain strong chromophores and the refractive index detector is of low sensitivity and not suitable for gradient elution. A recent development in HPLC detector technology, the evaporative light-scattering detector, will probably overcome these sensitivity problems. [Pg.283]

A variety of studies can be found in the literature for the solution of the convection heat transfer problem in micro-channels. Some of the analytical methods are very powerful, computationally very fast, and provide highly accurate results. Usually, their application is shown only for those channels and thermal boundary conditions for which solutions already exist, such as circular tube and parallel plates for constant heat flux or constant temperature thermal boundary conditions. The majority of experimental investigations are carried out under other thermal boundary conditions (e.g., experiments in rectangular and trapezoidal channels were conducted with heating only the bottom and/or the top of the channel). These experiments should be compared to solutions obtained for a given channel geometry at the same thermal boundary conditions. Results obtained in devices that are built up from a number of parallel micro-channels should account for heat flux and temperature distribution not only due to heat conduction in the streamwise direction but also conduction across the experimental set-up, and new computational models should be elaborated to compare the measurements with theory. [Pg.187]

The scope of my comments will cover not the development of analytical methods but rather the process of choosing methods which give useful answers to the questions posed by the research chemist, the process engineer or the product marketing manager. The analytical chemist is always faced with the paranoia causing problem of not being able to be confident in a purity measurement until it can be shown that impurities do not interfere. [Pg.409]


See other pages where Analytic methods problems is mentioned: [Pg.2903]    [Pg.1136]    [Pg.8]    [Pg.179]    [Pg.812]    [Pg.71]    [Pg.393]    [Pg.238]    [Pg.266]    [Pg.504]    [Pg.668]    [Pg.276]    [Pg.536]    [Pg.176]    [Pg.348]    [Pg.12]    [Pg.556]    [Pg.179]    [Pg.68]    [Pg.8]    [Pg.561]    [Pg.43]    [Pg.62]    [Pg.141]    [Pg.142]   


SEARCH



Analytic Problems

Analytical methods computational problems

Analytical problems

Application of Chromatographic Methods to Specific Analytical Problems

© 2024 chempedia.info