Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytic Problems

To be more precise, this error occurs in the limit /c — oo with Ef = 0(1) and step-size k such that k /ii = const. 3> 1. This error does not occur if Ef = 0 for the analytic problem, i.e., in case there is no vibrational energy in the stiff spring which implies V,. = U. [Pg.295]

An illustrative example generates a 2 x 2 calibration matrix from which we can determine the concentrations xi and X2 of dichromate and permanganate ions simultaneously by making spectrophotometric measurements yi and j2 at different wavelengths on an aqueous mixture of the unknowns. The advantage of this simple two-component analytical problem in 3-space is that one can envision the plane representing absorbance A as a linear function of two concentration variables A =f xuX2). [Pg.83]

The absorbance A is proportional to 1 through Beer s law (see Computer Projeet 2-1). The analytical problem is to solve the matrix equation... [Pg.83]

Each observation in any branch of scientific investigation is inaccurate to some degree. Often the accurate value for the concentration of some particular constituent in the analyte cannot be determined. However, it is reasonable to assume the accurate value exists, and it is important to estimate the limits between which this value lies. It must be understood that the statistical approach is concerned with the appraisal of experimental design and data. Statistical techniques can neither detect nor evaluate constant errors (bias) the detection and elimination of inaccuracy are analytical problems. Nevertheless, statistical techniques can assist considerably in determining whether or not inaccuracies exist and in indicating when procedural modifications have reduced them. [Pg.191]

Two frequently encountered analytical problems are (1) the presence of matrix components interfering with the analysis of the analyte and (2) the presence of analytes at concentrations too small to analyze accurately. We have seen how a separation can be used to solve the former problem. Interestingly, separation techniques can often be used to solve the second problem as well. For separations in which a complete recovery of the analyte is desired, it may be possible to transfer the analyte in a manner that increases its concentration. This step in an analytical procedure is known as a preconcentration. [Pg.223]

Willoughby, R., Sheehan, E., and Mitrovitch, S., A Global View ofLC/MS Howto Solve Your Most Challenging Analytical Problems, Global View Publishing, Pittsburgh, PA, 1998. [Pg.452]

A. L. Smith, Applied Infrared Spectroscopy Fundamentals, Techniques, and Analytical Problem-S ohing]oha Wiley Sons, Inc., New York, 1979, pp. 140-186. [Pg.205]

Several gas-Hquid chromatographic procedures, using electron-capture detectors after suitable derivatization of the aminophenol isomers, have been cited for the deterrnination of impurities within products and their detection within environmental and wastewater samples (110,111). Modem high pressure Hquid chromatographic separation techniques employing fluorescence (112) and electrochemical (113) detectors in the 0.01 pg range have been described and should meet the needs of most analytical problems (114,115). [Pg.312]

Applications. The capabiHties of a gc/k/ms in separating and identifying components in complex mixtures is very high for a broad spectmm of analytical problems. One area where k information particularly complements ms data is in the differentiation of isomeric compounds. An example is in the analysis of tricresyl phosphates (TCPs) used as additives in a variety of products because of thek lubricating and antiwear characteristics (see Lubrication and lubricants). One important use of TCPs is in hydrauHc fluid where they tenaciously coat metal surfaces thereby reducing friction and wear. Tricresyl phosphate [1330-78-5] (7.2 21 exists in a variety of isomeric forms and the commercial product is a complex mixture of these isomers. [Pg.402]

Of special importance is the complex problem of nitrogen addition as related to the dmg dopamine, where even model compounds lead to extremely complex chemistry and difficult analytical problems (65). [Pg.412]

The variety of AES techniques requires careful evaluation for selecting the proper approach to an analytical problem. Table 4 only suggests the various characteristics. More detailed treatment of detection limits must include consideration of spectral interferences (191). AES is the primary technique for metals analysis in ferrous and other alloys geological, environmental, and biological samples water analysis and process streams (192). [Pg.318]

Purity of toluene samples as well as the number, concentration, and identity of other components can be readily determined using standard gas chromatography techniques (40—42). Toluene content of high purity samples can also be accurately measured by freezing point, as outlined in ASTM D1016. Toluene exhibits characteristic uv, it, nmr, and mass spectra, which are useful in many specific control and analytical problems (2,43—45). [Pg.187]

Typically, quantitative protein determination is done on the one hand by colorimetric or nephelometric methods, on the other hand for more difficult analytical problems by more sophisticated techniques such as high performance liquid chromatography (HPLC), gel-electrophoresis and immunoassay. However, these methods are tedious, time-consuming and expensive. [Pg.100]

Fast detection of trace explosives in air is an urgent analytical problem, which solution will allow one efficiently to perform anti-terrorist measures. The difficulties that one runs into solving this problem are due to low vapor pressure of these compounds and the presence of interference compounds in air. [Pg.165]

As the result of the performed investigations was offered to make direct photometric determination of Nd microgram quantities in the presence of 500-fold and 1100-fold quantities of Mo and Pb correspondingly. The rare earth determination procedure involves sample dissolution in HCI, molybdenum reduction to Mo (V) by hydrazine and lead and Mo (V) masking by EDTA. The maximal colour development of Nd-arsenazo III complex was obtained at pH 2,7-2,8. The optimal condition of Nd determination that was established permit to estimate Nd without separation in solution after sample decomposition. Relative standard deviations at determination of 5-20 p.g of Nd from 0,1 g PbMoO are 0,1-0,03. The received data allow to use the offered procedure for solving of wide circle of analytical problems. [Pg.201]

XPS has been used in almost every area in which the properties of surfaces are important. The most prominent areas can be deduced from conferences on surface analysis, especially from ECASIA, which is held every two years. These areas are adhesion, biomaterials, catalysis, ceramics and glasses, corrosion, environmental problems, magnetic materials, metals, micro- and optoelectronics, nanomaterials, polymers and composite materials, superconductors, thin films and coatings, and tribology and wear. The contributions to these conferences are also representative of actual surface-analytical problems and studies [2.33 a,b]. A few examples from the areas mentioned above are given below more comprehensive discussions of the applications of XPS are given elsewhere [1.1,1.3-1.9, 2.34—2.39]. [Pg.23]

To select a column for a particular analytical problem, the first step is to make a choice about the pore size(s) to be used for the separation. In general, one cannot expect that a single pore size will fulfill the needs of a separation. In size exclusion chromatography, it is more common that columns of different types are combined with each other to deliver the separation range needed for a particular analysis. Therefore, column banks with different pore sizes are frequently combined with each other to maximize the separation power for... [Pg.328]

Unquestionably, most practical planar chromatographic (PC) analytical problems can be solved by the use of a single thin-layer chromatographic (TLC) plate and for most analytical applications it would be impractical to apply two-dimensional (2-D) TLC. One-dimensional chromatographic systems, however, often have an inadequate capability for the clean resolution of the compounds present in complex biological samples, and because this failure becomes increasingly pronounced as the number of compounds increases (1), multidimensional (MD) separation procedures become especially important for such samples. [Pg.170]

In coupled LC-GC, specific components or classes of components of complex mixtures are pre-fractionated by LC and are then transferred on-line to a GC system for analytical separation. Because of the ease of collecting and handling liquids, off-line LC-GC techniques are very popular, but they do present several disadvantages, e.g. the numerous steps involved, long analysis times, possibility of contamination, etc. The on-line coupled LC-GC techniques avoid all of these disadvantages, thus allowing us to solve difficult analytical problems in a fully automated way. [Pg.235]

Comprehensive two-dimensional GC has also been employed for the analysis of pesticides from serum, which, although not strictly a forensic analytical problem , provides an example of the promise of this technique to forensic applications, such as the analysis of drugs of abuse (40). Two-dimensional gas chromatograms of a 17-pesticide standard and an extract from human serum are shown in Figure 15.13. The total analysis time of about 5 min, high peak capacity and the separation of all... [Pg.426]

Because of these analytical problems, we expect that some of the disagreements in the literature (mainly concerning the physicochemical data of some tetrafluoro-borate ionic liquids) may have their origins in differing amounts of alkali cation impurities in the ionic liquids analyzed. [Pg.27]

Correctly used, statistics is an essential tool for the analyst. The use of statistical methods can prevent hasty judgements being made on the basis of limited information. It has only been possible in this chapter to give a brief resume of some statistical techniques that may be applied to analytical problems. The approach, therefore, has been to use specific examples which illustrate the scope of the subject as applied to the treatment of analytical data. There is a danger that this approach may overlook some basic concepts of the subject and the reader is strongly advised to become more fully conversant with these statistical methods by obtaining a selection of the excellent texts now available. [Pg.149]

Various types of derivatisation have now been developed for both gas and liquid chromatography. For more detailed information regarding the choice of a suitable derivative for a particular analytical problem, the appropriate works of reference should be consulted.62,63... [Pg.237]

Of all the techniques, it is those of Group 1 that are likely to give the most realistic data, simply because they measure transport of charged species only. They are not the easiest experimental techniques to perform on polymeric systems and this probably explains why so few studies have been undertaken. The experimental difficulties associated with the Tubandt-Hittorf method are in maintaining nonadherent thin-film compartments. One way is to use crosslinked films [79], while an alternative has been to use a redesigned Hittorf cell [80]. Although very succesful experimentally, the latter has analytical problems. Likewise, emf measurements can be performed with relative ease [81, 82] it is the necessary determination of activity coefficients that is difficult. [Pg.511]


See other pages where Analytic Problems is mentioned: [Pg.1720]    [Pg.1169]    [Pg.7]    [Pg.8]    [Pg.36]    [Pg.651]    [Pg.61]    [Pg.276]    [Pg.394]    [Pg.315]    [Pg.15]    [Pg.86]    [Pg.120]    [Pg.436]    [Pg.457]    [Pg.591]    [Pg.470]    [Pg.335]    [Pg.417]    [Pg.224]    [Pg.432]    [Pg.626]    [Pg.95]    [Pg.202]   


SEARCH



ANALYTICAL PROBLEM OF ION SUPPRESSION

Analytic Solution of Nondegenerate Quantum Control Problem

Analytic methods problems

Analytical methods computational problems

Analytical problems

Analytical problems

Analytical separations problems with

Analytical solution of the grain boundary diffusion problem

Applicability to analytical problems

Application of Chromatographic Methods to Specific Analytical Problems

Boundary Value Problems for Analytic Functions

Corrosion problems, analytical

Corrosion problems, analytical conditions

Define the Analytical Problem

Defining the analytical problem

Human analytical problems associated

Human tissues, analytical problems

Microelectronics analytical problems

Polar compounds, analytical problems

Problem-solving, analytical approach

Semiconductor problems, surface analytical techniques

Tautomeric Equilibrium Historical Overview of an Analytical Problem

© 2024 chempedia.info