Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analyte source, effect

BOX 5.1 Example of a spreadsheet calculation of the expected combined defined effect for a multiple mixture using different amounts of information. Note Tier-1 prediction relies on exposure and EC50 information (toxic unit summation), Tier-2 needs additional concentration response information for calculation of expected combined effects according to the reference models of response addition or concentration addition, and Tier-3 calculation (mixed models) requires information on the relevant mode of action. The sample is based on real analytical and effect data. Source Redrawn from data from Altenburger et al. (2004). [Pg.154]

Enzyme Source Type of substrate Analytical method Effect on PET Reference... [Pg.102]

Nonlinear Calibration Approaches Spectral data can respond nonlinearly to process perturbations due to deviations of the Lambert-Beer law, to the nonlinear characteristics of light detectors or to interactions among analytes. Sources of nonlinear behavior and techniques for the detection of important nonlinear effects in spectral responses have been discussed in the literature [25, 76]. In order to cope with the nonlinear features of spectral data sets, different approaches have been applied to build calibration models. These calibration approaches have almost always been based on NN models and locally weighted regression (LWR) models. [Pg.118]

In the same section, we also see that the source of the appropriate analytic behavior of the wave function is outside its defining equation (the Schibdinger equation), and is in general the consequence of either some very basic consideration or of the way that experiments are conducted. The analytic behavior in question can be in the frequency or in the time domain and leads in either case to a Kramers-Kronig type of reciprocal relations. We propose that behind these relations there may be an equation of restriction, but while in the former case (where the variable is the frequency) the equation of resh iction expresses causality (no effect before cause), for the latter case (when the variable is the time), the restriction is in several instances the basic requirement of lower boundedness of energies in (no-relativistic) spectra [39,40]. In a previous work, it has been shown that analyticity plays further roles in these reciprocal relations, in that it ensures that time causality is not violated in the conjugate relations and that (ordinary) gauge invariance is observed [40]. [Pg.97]

When designing and evaluating an analytical method, we usually make three separate considerations of experimental error. First, before beginning an analysis, errors associated with each measurement are evaluated to ensure that their cumulative effect will not limit the utility of the analysis. Errors known or believed to affect the result can then be minimized. Second, during the analysis the measurement process is monitored, ensuring that it remains under control. Finally, at the end of the analysis the quality of the measurements and the result are evaluated and compared with the original design criteria. This chapter is an introduction to the sources and evaluation of errors in analytical measurements, the effect of measurement error on the result of an analysis, and the statistical analysis of data. [Pg.53]

Evaluating Indeterminate Error Although it is impossible to eliminate indeterminate error, its effect can be minimized if the sources and relative magnitudes of the indeterminate error are known. Indeterminate errors may be estimated by an appropriate measure of spread. Typically, a standard deviation is used, although in some cases estimated values are used. The contribution from analytical instruments and equipment are easily measured or estimated. Indeterminate errors introduced by the analyst, such as inconsistencies in the treatment of individual samples, are more difficult to estimate. [Pg.63]

In the United States the analytical methods approved by most states are ones developed under the auspices of the Association of Official Analytical Chemists (AOAC) (3). Penalties for analytical deviation from guaranteed analyses vary, even from state to state within the United States (4). The legally accepted analytical procedures, in general, detect the solubiUty of nitrogen and potassium in water and the solubiUty of phosphoms in a specified citrate solution. Some very slowly soluble nutrient sources, particularly of nitrogen, are included in some specialty fertilizers such as turf fertilizers. The slow solubihty extends the period of effectiveness and reduces leaching losses. In these cases, the proportion and nature of the specialty source must be detailed on the labeling. [Pg.214]

Sources of Error. pH electrodes are subject to fewer iaterfereaces and other types of error than most potentiometric ionic-activity sensors, ie, ion-selective electrodes (see Electro analytical techniques). However, pH electrodes must be used with an awareness of their particular response characteristics, as weU as the potential sources of error that may affect other components of the measurement system, especially the reference electrode. Several common causes of measurement problems are electrode iaterferences and/or fouling of the pH sensor, sample matrix effects, reference electrode iastabiHty, and improper caHbration of the measurement system (12). [Pg.465]

A number of analytical methods have been developed for the determination of chlorotoluene mixtures by gas chromatography. These are used for determinations in environments such as air near industry (62) and soil (63). Liquid crystal stationary columns are more effective in separating m- and chlorotoluene than conventional columns (64). Prepacked columns are commercially available. ZeoHtes have been examined extensively as a means to separate chlorotoluene mixtures (see Molecularsieves). For example, a Y-type 2eohte containing sodium and copper has been used to separate y -chlorotoluene from its isomers by selective absorption (65). The presence of ben2ylic impurities in chlorotoluenes is determined by standard methods for hydroly2able chlorine. Proton (66) and carbon-13 chemical shifts, characteristic in absorption bands, and principal mass spectral peaks are available along with sources of reference spectra (67). [Pg.54]

After intakes have been estimated, they arc organized by population, as appropriate. Then, tlie sources of uncertainty (e.g., variability in analytical data, modeling results, parameter assumptions) and their effect on tlie exposure estimates are evaluated and sunuiumzed. Tliis information on uncertainty is important to site decision-makers who must evaluate tlie results of the e.xposure... [Pg.356]

The comparison of more than two means is a situation that often arises in analytical chemistry. It may be useful, for example, to compare (a) the mean results obtained from different spectrophotometers all using the same analytical sample (b) the performance of a number of analysts using the same titration method. In the latter example assume that three analysts, using the same solutions, each perform four replicate titrations. In this case there are two possible sources of error (a) the random error associated with replicate measurements and (b) the variation that may arise between the individual analysts. These variations may be calculated and their effects estimated by a statistical method known as the Analysis of Variance (ANOVA), where the... [Pg.146]

Adler and Axelrod,58 in their two-channel spectrograph, have taken the ultimate step in this direction by measuring the two intensities simultaneously. We may take for granted that the proper use of-an internal standard can eliminate the effect of different variations in equipment in different cases. It follows that care may be relaxed in connection with variations thus eliminated for example, approximate voltage regulation suffices for an x-ray source used to excite both analytical lines when these are measured simultaneously. [Pg.186]

The relatively impure crude Ca obtained from both thermal reduction and electrolytic sources (97-98%) is distilled to give a 99% pure product. Volatile impurities such as the alkali metals are removed in a predistillation mode at 800°C subsequent distillation of the bulk metal at 825-850°C under vacuum removes most of the involatile impurities, such as Al, Cl, Fe and Si. The N content is often not reduced because of atmospheric contamination after distillation. Unfortunately, these commercial methods have no effect on Mg, which is the major impurity (up to 1 wt%). Typical analytical data for Ca samples prepared by electrolysis, thermal reduction (using Al) and distillation are collated in Table 1. [Pg.377]

The pressure difference between the source of the mass spectrometer and the laboratory environment may be used to draw a solution, containing analyte and matrix material, through the probe via a piece of capillary tubing. When an adequate spectrum of the first analyte has been obtained, the capillary is simply placed in a reservoir containing another analyte (and matrix material) and the process repeated. This may therefore be used as a more convenient alternative to the conventional static FAB probe and this mode of operation may also benefit from the reduction in suppression effects if the analyte is one component of a mixture. [Pg.146]

High performance liquid chromatography (HPLC) has been by far the most important method for separating chlorophylls. Open column chromatography and thin layer chromatography are still used for clean-up procedures to isolate and separate carotenoids and other lipids from chlorophylls and for preparative applications, but both are losing importance for analytical purposes due to their low resolution and have been replaced by more effective techniques like solid phase, supercritical fluid extraction and counter current chromatography. The whole analysis should be as brief as possible, since each additional step is a potential source of epimers and allomers. [Pg.432]


See other pages where Analyte source, effect is mentioned: [Pg.26]    [Pg.331]    [Pg.693]    [Pg.338]    [Pg.70]    [Pg.12]    [Pg.222]    [Pg.1004]    [Pg.58]    [Pg.179]    [Pg.376]    [Pg.398]    [Pg.419]    [Pg.713]    [Pg.465]    [Pg.401]    [Pg.132]    [Pg.317]    [Pg.317]    [Pg.318]    [Pg.458]    [Pg.14]    [Pg.167]    [Pg.41]    [Pg.308]    [Pg.290]    [Pg.185]    [Pg.52]    [Pg.344]    [Pg.271]    [Pg.284]    [Pg.574]    [Pg.209]    [Pg.284]   
See also in sourсe #XX -- [ Pg.3 , Pg.5 ]




SEARCH



Analytical Effects

Source Effects

© 2024 chempedia.info