Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analysis, qualitative chemical quantitative

Techniques of chemical analysis, qualitative and quantitative, employing only very tiny quantities of substances. [Pg.40]

There are two types of analysis qualitative and quantitative. Qualitative analysis determines which chemical is present, while quantitative analysis determines the concentration of a chemical. Concentration means an amount of chemical per unit of sample, for example, 100 micrograms (pg) of morphine per liter (L) of blood (100 pg/L) or the amount of pure chemical per weight of material, such as 1 gram of heroin per 10 grams of white powder. [Pg.32]

The strong similarity in terms between instrumental chemical analysis (qualitative and quantitative measurements) and the field of bioindicators (as a qualitative approach to pollution control) and biomonitors (as a quantitative approach) makes it worthwhile to compare the two techniques. [Pg.241]

You will come across numerous examples of qualitative and quantitative methods in this text, most of which are routine examples of chemical analysis. It is important to remember, however, that nonroutine problems prompted analytical chemists to develop these methods. Whenever possible, we will try to place these methods in their appropriate historical context. In addition, examples of current research problems in analytical chemistry are scattered throughout the text. [Pg.5]

In Section lA we indicated that analytical chemistry is more than a collection of qualitative and quantitative methods of analysis. Nevertheless, many problems on which analytical chemists work ultimately involve either a qualitative or quantitative measurement. Other problems may involve characterizing a sample s chemical or physical properties. Finally, many analytical chemists engage in fundamental studies of analytical methods. In this section we briefly discuss each of these four areas of analysis. [Pg.8]

The combined use of energy-dispersive X-ray spectroscopy and TEM/STEM is a routine method of analytical electron microscopy enabling both qualitative and quantitative chemical analysis of interfaces and interlayers with high lateral resolution. Reso-... [Pg.207]

The characterisation of materials is a central necessity of modern materials science. Effectively, it signifies making precise distinctions between different specimens of what is nominally the same material. The concept covers qualitative and quantitative analysis of chemical composition and its variation between phases the examination of the spatial distribution of grains, phases and of minor constituents the crystal structures present and the extent, nature and distribution of structural imperfections (including the stereological analysis outlined in Chapter 5). [Pg.213]

Until the last War, variants of optical emission spectroscopy ( spectrometry when the technique became quantitative) were the principal supplement to wet chemical analysis. In fact, university metallurgy departments routinely employed resident analytical chemists who were primarily experts in wet methods, qualitative and quantitative, and undergraduates received an elementary grounding in these techniques. This has completely vanished now. [Pg.234]

In addition, the chapter will provide an overview of htunan reliability quantification techniques, and the relationship between these techniques and qualitative modeling. The chapter will also describe how human reliability is integrated into chemical process quantitative risk assessment (CPQRA). Both qualitative and quantitative techniques will be integrated within a framework called SPEAR (System for Predictive Error Analysis and Reduction). [Pg.202]

In a modern industrialised society the analytical chemist has a very important role to play. Thus most manufacturing industries rely upon both qualitative and quantitative chemical analysis to ensure that the raw materials used meet certain specifications, and also to check the quality of the final product. The examination of raw materials is carried out to ensure that there are no unusual substances present which might be deleterious to the manufacturing process or appear as a harmful impurity in the final product. Further, since the value of the raw material may be governed by the amount of the required ingredient which it contains, a quantitative analysis is performed to establish the proportion of the essential component this procedure is often referred to as assaying. The final manufactured product is subject to quality control to ensure that its essential components are present within a pre-determined range of composition, whilst impurities do not exceed certain specified limits. The semiconductor industry is an example of an industry whose very existence is dependent upon very accurate determination of substances present in extremely minute quantities. [Pg.3]

Many of the reactions of qualitative and quantitative chemical analysis take place in solution the solvent is most commonly water but other liquids may also be used. It is, therefore, necessary to have a general knowledge of the conditions which exist in solutions, and also of the factors which influence chemical reactions. [Pg.15]

X-ray photoelectron spectroscopy (XPS), which is synonymous with ESCA (Electron Spectroscopy for Chemical Analysis), is one of the most powerful surface science techniques as it allows not only for qualitative and quantitative analysis of surfaces (more precisely of the top 3-5 monolayers at a surface) but also provides additional information on the chemical environment of species via the observed core level electron shifts. The basic principle is shown schematically in Fig. 5.34. [Pg.244]

Jackman, R.L., Yada, R.Y., and Tung, M.A., Review separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis, J. Food Biochem., 11, 279, 1987. [Pg.499]

This chapter provides general information for performing qualitative or quantitative risk assessments on buildings in process plants. For detailed guidance on risk assessment techniques, the user is referred to other CCPS books on this subject, including Reference 3, Guidelines for Hazard Evaluation Procedures, Second Edition, and Reference 4, Guidelines for Chemical Process Quantitative Risk Analysis. [Pg.104]

It is quite clear from Schemes 2.1-2.5 that in rubbers polymer identification and additive analysis are highly interlinked. This is at variance to procedures used in polymer/additive analysis. The methods for qualitative and quantitative analysis of the composition of rubber products are detailed in ASTM D 297 Rubber Products-Chemical Analysis [39]. [Pg.39]

XANES spectroscopy is also the basis of chemically sensitive X-ray imaging, as well as qualitative and quantitative microspectroscopy [306], ptXANES is attractive for chemical analysis, with its spatial resolution down to 10 ptm. Variations on the theme are surface EXAFS (SEXAFS), grazing incidence XAS and in situ time-resolved XAS investigations. Grazing angle XAFS can be used for the study of ultrathin multilayer systems. [Pg.643]

Most of the essential information on archaeological materials is derived, at the present time, using physical methods of analysis. This may include the qualitative or quantitative assessment of their composition, their provenance, the techniques used for their production, and their age. Some of the most widely used methods of chemical analysis based on physical principles are succinctly reviewed in the following paragraphs. [Pg.59]

Are Side Reactions Important What is the Stoichiometry of the Reaction When a mixture of various species is present in a reaction vessel, one often has to worry about the possibility that several reactions, and not just a single reaction, may occur. If one is trying to study one particular reaction, side reactions complicate chemical analysis of the reaction mixture and mathematical analysis of the raw data. The stoichiometry of the reaction involved and the relative importance of the side reactions must be determined by qualitative and quantitative anal-lysis of the products of the reaction at various times. If one is to observe the growth and decay of intermediate products in series reactions, measurements must be made on the reaction system before the reaction goes to completion. [Pg.34]

Evidences about the successful intercalation of the Rh-TPPTS complex (qualitative and quantitative) between the layers of both LDHs were also provided by the XPS and DRIFTS results. XPS composition was in a very good concordance with chemical analysis. As shown in Table 2, the binding energies of the constitutive elements in both LDHs are typical for their oxidation states, while for Rh it corresponds to (I) state [13] that is again in accordance with the oxidation state of the expected complex. [Pg.306]

The problem of toxic subjects detection in the tested objects can be solved by two options chemical analysis, for revealing separate toxics, or their products, and biotesting with the result of the tested samples toxicity degree indication without identification of the agent. Qualitative and quantitative chrmical/analytical methods allow with the higher accuracy and, in some cases, rapidly detect presence of the separate toxics or their products in the tested objects. It is important for the regular detection of the different pollutions of any agents in the tested objects. [Pg.226]

Qualitative and quantitative analysis for a wide range of sample types, especially for inorganic materials and polymers. Kinetic studies where weight changes can be clearly attributed to a particular reaction. Chemical reactions, volatilization, adsorption and desorption may be studied. Relative precision at best ca. 1% but very variable. [Pg.479]

There is much in common between the techniques and methods used in qualitative and quantitative analysis. In both cases, a sample is prepared for analysis by physical and chemical conditioning, and then a measurement of some property related to the analyte is made. It is in the degree of control over the relation between a measurement and the amount of analyte present that the major difference lies. [Pg.612]

The first steps in unravelling the details of an unknown system frequently involve the identification of its constituents by qualitative chemical analysis. Follow-up investigations usually require structural information and quantitative measurements. This pattern appears in such diverse areas as the formulation of new drugs, the examination of meteorites, and studies on the results of heavy ion bombardment by nuclear physicists. [Pg.613]

Gonzalez et al. 2008). Laser ablation is a direct sampling technique by which a high energy laser is focused on the surface of a material and atoms, ions, and particles are ejected. The particles, which are chemically representative of the bulk sample, are then transported into an ICPMS for analysis. In LIBS, a luminous, short-lived plasma is created on the sample surface by the focused laser beam and its emission spectra are analyzed to provide both qualitative and quantitative chemical compositional analysis (Cremers... [Pg.295]

Analytical chemistry is that branch of chemistry which deals with the qualitative or quantitative determination of one or more constituents in an unknown material. Ewing (1985 1) defines it as the science and art of determining the composition of materials in terms of the elements or compounds contained in them . Many would regard analytical chemistry as the cornerstone of chemistry itself, since the ability to identify and quantify chemical constituents underpins the theoretical and practical advancement of other areas of chemistry. Analytical chemistry can itself be subdivided in many ways. An important one is the difference between qualitative and quantitative analysis. Qualitative analysis is when a particular element or compound is simply determined to be present or not in a particular sample. Quantitative analysis attempts to attach a number to the level at which... [Pg.38]

Several qualitative approaches can be used to identify hazardous reaction scenarios, including process hazard analysis, checklists, chemical interaction matrices, and an experience-based review. CCPS (1995a p. 176) describes nine hazard evaluation procedures that can be used to identify hazardous reaction scenarios-checklists, Dow fire and explosion indices, preliminary hazard analysis, what-if analysis, failure modes and effects analysis (FMEA), HAZOP study, fault tree analysis, human error analysis, and quantitative risk analysis. [Pg.341]

Analytical procedures can be classified in two ways first, in terms of the goal of the analysis, and second, in terms of the nature of the method used. In terms of the goal of the analysis, classification can be based on whether the analysis is qualitative or quantitative. Qualitative analysis is identification. In other words, it is an analysis carried out to determine only the identity of a pure analyte, the identity of an analyte in a matrix, or the identity of several or all components of a mixture. Stated another way, it is an analysis to determine what a material is or what the components of a mixture are. Such an analysis does not report the amount of the substance. If a chemical analysis is carried out and it is reported that there is mercury present in the water in a lake and the quantity of the mercury is not reported, then the analysis was a qualitative analysis. Quantitative analysis, on the other hand, is the analysis of a material for how much of one or more components is present. Such an analysis is undertaken when the identity of the components is already known and when it is important to also know the quantities of these components. It is the determination of the quantities of one or more components present per some quantity of the matrix. For example, the analysis of the soil in your garden that reports the potassium level as 342 parts per million (ppm) would be classified as a quantitative analysis. The major emphasis of this text is on quantitative analysis, although some qualitative applications will be discussed for some techniques. See Workplace Scene 1.1. [Pg.3]

Potentiometry is the measurement of electrode potential in chemical analysis procedures for the purpose of obtaining qualitative and quantitative information about an analyte. The reference electrode is a half-cell that is designed such that its potential is a constant, making it useful as a reference point for potential measurements. Ground is the ultimate reference point in electronic measurements. [Pg.540]


See other pages where Analysis, qualitative chemical quantitative is mentioned: [Pg.134]    [Pg.87]    [Pg.91]    [Pg.203]    [Pg.289]    [Pg.387]    [Pg.901]    [Pg.85]    [Pg.590]    [Pg.283]    [Pg.500]    [Pg.315]    [Pg.56]    [Pg.48]    [Pg.31]    [Pg.72]    [Pg.482]    [Pg.297]    [Pg.171]    [Pg.41]    [Pg.811]   
See also in sourсe #XX -- [ Pg.42 , Pg.55 , Pg.83 , Pg.98 , Pg.124 , Pg.145 , Pg.179 , Pg.206 , Pg.249 , Pg.270 , Pg.329 ]




SEARCH



Qualitative analysis

Qualitative chemical analysis

© 2024 chempedia.info