Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium salts reaction with amides

Amides of fatty adds are also formed from fatty acids during thermal treatments by reaction with ammonium salts, amines or amino acids (see Section 8.2.10.1.3). [Pg.157]

The original Willgerodt Reaction conditions required high temperature and pressure, with use of ammonium poly sulfide fNHihS, and H20 to give either an amide or the ammonium salt of the corresponding acid. Kindler s modification, shown above, eliminated these problems and substituted S8 and a dry amine, most commonly morpholine. [Pg.690]

Correspondingly, metal amides in liquid ammonia have a basic character. The reaction of ammonium salt with metal amide in liquid ammonia is analogous to the neutralization of acid and base in water. The heats of neutralization in ammonia are even larger than in water. The process of hydrolysis corresponds to ammonolysis in ammonia. This results in ammonobasic compounds, for example, in the infusible precipitate HgNH2Cl from HgCl2. [Pg.232]

It is well known that halomethyleneiminium salts, often prepared in situ (see Section 2.1.2.2) react with ammonium salts, primary amines, secondary amides, urea and IV-substituted ureas to afrbrd amidinium salts, from which the free amidines can be obtained by addition of bases. > 4 Some recent results are given below. Dimethylformamide chloride and other 7V,iV-disubstituted formamide chlorides were reacted with acetanilides, chloroacetanilides, 6-aminopenam derivatives, 2-aminopyrimidine, 4-aminouracil, 2-amino-4-chloropyridazine, 2-aminothiazole, 2-aminobenzothiazole and thiobenzamides to give the amidines via the amidinium salts. In the reaction of MA -disubstituted formamide chlorides with thiobenzamides the solvent seems to be decisive for the course of the reaction. In tertiary formamides the thiobenzamides are desulfurized to nitriles, whereas in CHCI3 or CCI4 amidinium salts (296 Scheme 45) are formed. From trimethylsilyl isocyanate and the fluorinated amine (297) the /V-fluorocarbonylamidine (298) is accessible. ... [Pg.543]

The formula assigned to gallotannic acid is in accord with its reactions. The acid is converted into gallic acid by hydrolysis, forms a penta-acetyl derivative when heated with acetic anhydride, and is converted into the amide and the ammonium salt of gallic acid when boiled with a solution of ammonia. [Pg.541]

Cyclic anhydrides react with ammonia or an amine in the same general way as acyclic anhydrides however, the reaction yields a product that is both an amide and an ammonium salt. Acidifying the ammonium salt gives a compound that is both an amide and an acid ... [Pg.797]

By analogy, ammonium salts should behave as acids in liquid ammonia, since they produce the cation NH4 (the solvo-cation ), and soluble inorganic amides (for example KNHj, ionic) should act as bases. This idea is borne out by experiment ammonium salts in liquid ammonia react with certain metals and hydrogen is given off. The neutralisation of an ionic amide solution by a solution of an ammonium salt in liquid ammonia can be carried out and followed by an indicator or by the change in the potential of an electrode, just like the reaction of sodium hydroxide with hydrochloric acid in water. The only notable difference is that the salt formed in liquid ammonia is usually insoluble and therefore precipitates. [Pg.90]

The reaction commences at about 120° the carbamic acid formed decomposes immediately into carbon dioxide and ammonia. The latter may form the ammonium salt with unreacted acid the ammonium salt also reacts with urea at temperatures above 120° to yield the amide ... [Pg.401]

Amidation. Heating of the diammonium salt or reaction of the dimethyl ester with concentrated ammonium hydroxide gives adipamide [628-94-4] mp 228°C, which is relatively insoluble in cold water. Substituted amides are readily formed when amines are used. The most industrially significant reaction of adipic acid is its reaction with diamines, specifically 1,6-hexanediamine. A water-soluble polymeric salt is formed initially upon mixing solutions of the two materials then hea ting with removal of water produces the polyamide, nylon-6,6. This reaction has been studied extensively, and the hterature contains hundreds of references to it and to polyamide product properties (31). [Pg.240]

The formation of amides can be accompHshed by dehydration of the ammonium salts of sahcyhc acid. The more common method for amines is the reaction of the ester, acyl hahde, or anhydride with an amine or ammonia. Each step is fast and essentially irreversible. [Pg.284]

In the case of nicotinamide, the color yield is often low. This problem can be circumvented by either hydrolysis to nicotinic acid or by conversion of the amide to a fluorescent compound. Treatment of nicotinamide with methyl iodide yields the quaternary ammonium salt, /V-methyl nicotinamide (5). Reaction of this compound with acetophenone yields a fluorescent adduct (49). Other carbonyl compounds have also been used (50—54). [Pg.51]

We ve already studied the two most general reactions of amines—alkylation and acylation. As we saw earlier in this chapter, primary, secondary, and tertiary amines can be alkylated by reaction with a primary alkyl halide. Alkylations of primary and secondary amines are difficult to control and often give mixtures of products, but tertiary amines are cleanly alkylated to give quaternary ammonium salts. Primary and secondary (but not tertiary) amines can also be acylated by nucleophilic acyl substitution reaction with an acid chloride or an acid anhydride to yield an amide (Sections 21.4 and 21.5). Note that overacylation of the nitrogen does not occur because the amide product is much less nucleophilic and less reactive than the starting amine. [Pg.936]

Other nitrogen compounds, among them hydroxylamine, hydrazines, and amides (15-9), also add to alkenes. Even with amines, basic catalysts are sometimes used, so that RNH or R2N is the actual nucleophile. Tertiary amines (except those that are too bulky) add to Michael-type substrates in a reaction that is catalyzed by acids like HCl or HNO3 to give the corresponding quaternary ammonium salts. " ... [Pg.1000]

A thio-substituted, quaternary ammonium salt can be synthesized by the Michael addition of an alkyl thiol to acrylamide in the presence of benzyl trimethyl ammonium hydroxide as a catalyst [793-795]. The reaction leads to the crystallization of the adducts in essentially quantitative yield. Reduction of the amides by lithium aluminum hydride in tetrahydrofuran solution produces the desired amines, which are converted to desired halide by reaction of the methyl iodide with the amines. The inhibitor is useful in controlling corrosion such as that caused by CO2 and H2S. [Pg.92]

To synthesize new surfactants, having incorporated both structural elements, the known siloxanyl modified halogenated esters and ethers of dicyclopentadiene [5] were treated with different amines according to the reaction scheme. Triethylamine yielded quaternary ammonium salts directly. Alternatively, after reaction with diethylamine or morpholine, the isolated siloxanyl-modified tertiary amines were also converted to quaternary species. To obtain anionic surfactants, the halogenated precursors were initially reacted with n-propylamine. In subsequent reaction steps the secondary amines formed were converted with maleic anhydride into amides, and the remaining acid functions neutralized. Course and rate of each single reaction strongly depended on the structure of the initial ester or ether compound and the amine applied. The basicity of the latter played a less important role [6]. [Pg.267]

Uncatalyzed amidations of acids have been realized under solvent-free conditions and with a very important microwave effect [67 a]. The best results were obtained by use of a slight excess of either amine or acid (1.5 equiv.). The reaction involves thermolysis of the previously formed ammonium salt (acid-base equilibrium) and is promoted by nucleophilic attack of the amine on the carbonyl moiety of the acid and removal of water at high temperature. The large difference in yields (MW > A) might be a consequence of interaction of the polar TS with the electric field (Eq. (15 a) and Tab. 3.6). [Pg.78]

Problematic functional groups, however, are thioethers and disulfides [28] as well as free amines which poison catalysts of type 1 [4c]. In case of amines this problem is easily solved by choosing either an appropriate protecting group for nitrogen (e.g. amide, sulfonamide, urethane), or simply by protonation since ammonium salts were found to be compatible with 1 [4c]. As will be discussed in Sect. 4, free amines can also be metathesized in supercritical C02 as the reaction medium [7]. [Pg.60]

Aldonamides are readily prepared by reaction of lactones with liquid ammonia (86,99,100), with ammonium hydroxide (101,102), or by bubbling ammonia gas into alcoholic solutions of the sugar lactones (103-104). Aldonamides of the tetronic adds are stable in aqueous solution (105), but penton- or hexon-amides are hydrolyzed, as shown by the change of the optical rotation of the amide solutions (106). The hydrolysis is catalyzed by acids and bases, and the product was the ammonium salt of the aldonic acid. [Pg.151]

Additional work was carried out by the GE group on optimization of the reaction yield and to eliminate unwanted linear oligomers [14], Three side reactions which interfere with synthesis of cyclics were identified reaction of the amine with acid chloride to form an acyl ammonium salt, followed by decomposition to an amide (Equation (3.2)) reaction with CH2CI2 to form a salt (Equation (3.3)) hydrolysis of the acid chloride, forming carboxylate via catalysis... [Pg.121]

In an interesting catalysed conversion of trichloroethene by secondary amines into aminoacetamides, the initial steps are thought to involve the p-elimination of HC1 to produce dichloroethyne (Scheme 9.1), which reacts with the secondary amine under the wet conditions to produce the amide [35] the reaction does not work with N-alkylanilines. Such a mechanism is realistic, as it is well known [36] that trichloroethene is converted into the inflammable and explosive dichloroethyne by bases, and quaternary ammonium salts catalyse the formation of the alkyne when trichloroethene is reacted with oxiranes [37]. Chloroethynes have also been obtained by the catalysed reaction of terminal ethynes with carbon tetrachloride under basic conditions [38]. [Pg.396]


See other pages where Ammonium salts reaction with amides is mentioned: [Pg.235]    [Pg.1166]    [Pg.470]    [Pg.69]    [Pg.72]    [Pg.943]    [Pg.864]    [Pg.542]    [Pg.27]    [Pg.508]    [Pg.263]    [Pg.746]    [Pg.936]    [Pg.1350]    [Pg.1567]    [Pg.42]    [Pg.71]    [Pg.30]    [Pg.402]    [Pg.190]    [Pg.195]    [Pg.49]   
See also in sourсe #XX -- [ Pg.512 ]




SEARCH



Amidating reaction

Amidation reactions

Amide Reaction

Amide bases reaction with ammonium salts

Amide salts

Amide, sodium reaction with ammonium salts

Ammonium amides

Ammonium reactions with

Ammonium salts, reactions

Reaction ammonium

Reaction with amides

Reaction with ammonium salts

Reactions with salts

© 2024 chempedia.info